Properties

Label 550b2
Conductor 550550
Discriminant 25164218750-25164218750
j-invariant 231786221948265611610510 -\frac{23178622194826561}{1610510}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3148501x22038602y^2+xy+y=x^3-148501x-22038602 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3148501xz222038602z3y^2z+xyz+yz^2=x^3-148501xz^2-22038602z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3192456675x1027655633250y^2=x^3-192456675x-1027655633250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -148501, -22038602])
 
gp: E = ellinit([1, 0, 1, -148501, -22038602])
 
magma: E := EllipticCurve([1, 0, 1, -148501, -22038602]);
 
oscar: E = elliptic_curve([1, 0, 1, -148501, -22038602])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  550 550  = 252112 \cdot 5^{2} \cdot 11
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  25164218750-25164218750 = 1257115-1 \cdot 2 \cdot 5^{7} \cdot 11^{5}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  231786221948265611610510 -\frac{23178622194826561}{1610510}  = 121511152851213-1 \cdot 2^{-1} \cdot 5^{-1} \cdot 11^{-5} \cdot 285121^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.44979453697987167748866695711.4497945369798716774886669571
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.645075580762821490188287290490.64507558076282149018828729049
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.01293634338757291.0129363433875729
Szpiro ratio: σm\sigma_{m} ≈ 7.5022579214189777.502257921418977

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.121601116637864289990428661190.12160111663786428999042866119
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 10 10  = 125 1\cdot2\cdot5
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.21601116637864289990428661191.2160111663786428999042866119
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.216011166L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1216011.00000010121.216011166\displaystyle 1.216011166 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.121601 \cdot 1.000000 \cdot 10}{1^2} \approx 1.216011166

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   550.2.a.f

qq2+q3+q4q63q7q82q9+q11+q12+6q13+3q14+q16+7q17+2q18+5q19+O(q20) q - q^{2} + q^{3} + q^{4} - q^{6} - 3 q^{7} - q^{8} - 2 q^{9} + q^{11} + q^{12} + 6 q^{13} + 3 q^{14} + q^{16} + 7 q^{17} + 2 q^{18} + 5 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2400
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I1I_{1} nonsplit multiplicative 1 1 1 1
55 22 I1I_{1}^{*} additive 1 2 7 1
1111 55 I5I_{5} split multiplicative -1 1 5 5

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
55 5B.1.3 5.24.0.4

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[103, 210, 265, 149], [431, 10, 430, 11], [1, 0, 10, 1], [1, 10, 0, 1], [111, 10, 0, 1], [221, 10, 225, 51], [321, 10, 285, 51], [6, 13, 385, 321]]
 
GL(2,Integers(440)).subgroup(gens)
 
Gens := [[103, 210, 265, 149], [431, 10, 430, 11], [1, 0, 10, 1], [1, 10, 0, 1], [111, 10, 0, 1], [221, 10, 225, 51], [321, 10, 285, 51], [6, 13, 385, 321]];
 
sub<GL(2,Integers(440))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 440=23511 440 = 2^{3} \cdot 5 \cdot 11 , index 4848, genus 11, and generators

(103210265149),(4311043011),(10101),(11001),(1111001),(2211022551),(3211028551),(613385321)\left(\begin{array}{rr} 103 & 210 \\ 265 & 149 \end{array}\right),\left(\begin{array}{rr} 431 & 10 \\ 430 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 111 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 221 & 10 \\ 225 & 51 \end{array}\right),\left(\begin{array}{rr} 321 & 10 \\ 285 & 51 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 385 & 321 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[440])K:=\Q(E[440]) is a degree-202752000202752000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/440Z)\GL_2(\Z/440\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 275=5211 275 = 5^{2} \cdot 11
55 additive 1818 2 2
1111 split multiplicative 1212 50=252 50 = 2 \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5.
Its isogeny class 550b consists of 2 curves linked by isogenies of degree 5.

Twists

The minimal quadratic twist of this elliptic curve is 110a2, its twist by 55.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.440.1 Z/2Z\Z/2\Z not in database
44 Q(ζ5)\Q(\zeta_{5}) Z/5Z\Z/5\Z not in database
66 6.0.85184000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.8004966750000.9 Z/3Z\Z/3\Z not in database
1010 10.2.4882812500000000.7 Z/5Z\Z/5\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 12.0.117128000000000.2 Z/10Z\Z/10\Z not in database
2020 20.0.119209289550781250000000000000000.8 Z/5ZZ/5Z\Z/5\Z \oplus \Z/5\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit ord add ord split ord ord ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) 3 6 - 0 1 0 0 0 0 0 0 0 0 0 0
μ\mu-invariant(s) 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.