Properties

Label 55233g4
Conductor 5523355233
Discriminant 583039603233583039603233
j-invariant 8248329497717 \frac{82483294977}{17}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x2294644x61485650y^2+xy+y=x^3-x^2-294644x-61485650 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z294644xz261485650z3y^2z+xyz+yz^2=x^3-x^2z-294644xz^2-61485650z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x34714299x3939795882y^2=x^3-4714299x-3939795882 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 1, -294644, -61485650])
 
gp: E = ellinit([1, -1, 1, -294644, -61485650])
 
magma: E := EllipticCurve([1, -1, 1, -294644, -61485650]);
 
oscar: E = elliptic_curve([1, -1, 1, -294644, -61485650])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(8167439/12100,8658459317/1331000)(8167439/12100, 8658459317/1331000)13.35234307748787195391473706313.352343077487871953914737063\infty
(1253/4,1249/8)(-1253/4, 1249/8)0022

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  55233 55233  = 32171923^{2} \cdot 17 \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  583039603233583039603233 = 36171963^{6} \cdot 17 \cdot 19^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  8248329497717 \frac{82483294977}{17}  = 33171145133^{3} \cdot 17^{-1} \cdot 1451^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.64488951297593159474470333021.6448895129759315947447033302
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.37663612094134348095743300421-0.37663612094134348095743300421
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.03130507539005881.0313050753900588
Szpiro ratio: σm\sigma_{m} ≈ 4.5235589642917034.523558964291703

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 13.35234307748787195391473706313.352343077487871953914737063
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.204915719253867227919224820650.20491571925386722791922482065
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 2122 2\cdot1\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 5.47220997089564463704934111945.4722099708956446370493411194
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

5.472209971L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.20491613.3523438225.472209971\displaystyle 5.472209971 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.204916 \cdot 13.352343 \cdot 8}{2^2} \approx 5.472209971

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 55233.2.a.g

qq2q4+2q5+4q7+3q82q10+2q134q14q16q17+O(q20) q - q^{2} - q^{4} + 2 q^{5} + 4 q^{7} + 3 q^{8} - 2 q^{10} + 2 q^{13} - 4 q^{14} - q^{16} - q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 221184
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I0I_0^{*} additive -1 2 6 0
1717 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1919 44 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 32.48.0.12

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[20671, 0, 0, 62015], [1, 64, 0, 1], [61953, 64, 61952, 65], [1, 0, 64, 1], [48679, 16530, 41154, 16303], [16319, 0, 0, 62015], [54778, 35967, 39729, 3592], [15, 286, 46010, 4899], [13567, 10944, 56202, 1], [59, 10, 15806, 2679]]
 
GL(2,Integers(62016)).subgroup(gens)
 
Gens := [[20671, 0, 0, 62015], [1, 64, 0, 1], [61953, 64, 61952, 65], [1, 0, 64, 1], [48679, 16530, 41154, 16303], [16319, 0, 0, 62015], [54778, 35967, 39729, 3592], [15, 286, 46010, 4899], [13567, 10944, 56202, 1], [59, 10, 15806, 2679]];
 
sub<GL(2,Integers(62016))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 62016=2631719 62016 = 2^{6} \cdot 3 \cdot 17 \cdot 19 , index 15361536, genus 5353, and generators

(206710062015),(16401),(61953646195265),(10641),(48679165304115416303),(163190062015),(5477835967397293592),(15286460104899),(1356710944562021),(5910158062679)\left(\begin{array}{rr} 20671 & 0 \\ 0 & 62015 \end{array}\right),\left(\begin{array}{rr} 1 & 64 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 61953 & 64 \\ 61952 & 65 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 64 & 1 \end{array}\right),\left(\begin{array}{rr} 48679 & 16530 \\ 41154 & 16303 \end{array}\right),\left(\begin{array}{rr} 16319 & 0 \\ 0 & 62015 \end{array}\right),\left(\begin{array}{rr} 54778 & 35967 \\ 39729 & 3592 \end{array}\right),\left(\begin{array}{rr} 15 & 286 \\ 46010 & 4899 \end{array}\right),\left(\begin{array}{rr} 13567 & 10944 \\ 56202 & 1 \end{array}\right),\left(\begin{array}{rr} 59 & 10 \\ 15806 & 2679 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[62016])K:=\Q(E[62016]) is a degree-18962307455385601896230745538560 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/62016Z)\GL_2(\Z/62016\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
33 additive 66 6137=17192 6137 = 17 \cdot 19^{2}
1717 nonsplit multiplicative 1818 3249=32192 3249 = 3^{2} \cdot 19^{2}
1919 additive 182182 153=3217 153 = 3^{2} \cdot 17

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 55233g consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 17a3, its twist by 5757.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(17)\Q(\sqrt{17}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(57)\Q(\sqrt{-57}) Z/4Z\Z/4\Z not in database
22 Q(969)\Q(\sqrt{-969}) Z/4Z\Z/4\Z not in database
44 Q(17,57)\Q(\sqrt{17}, \sqrt{-57}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.199929645563904.55 Z/8Z\Z/8\Z not in database
88 deg 8 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.2.23804489507067.1 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ord add ord ord ss ord nonsplit add ord ord ord ord ord ord ss
λ\lambda-invariant(s) 4 - 1 1 1,1 1 1 - 1 1 1 1 1 1 1,1
μ\mu-invariant(s) 2 - 0 0 0,0 0 0 - 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.