Properties

Label 55800.bd
Number of curves 44
Conductor 5580055800
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bd1") E.isogeny_class()
 

Elliptic curves in class 55800.bd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55800.bd1 55800bn4 [0,0,0,1494075,702882250][0, 0, 0, -1494075, -702882250] 15811147933922/101695515811147933922/1016955 2372352624000000023723526240000000 [2][2] 589824589824 2.19962.1996  
55800.bd2 55800bn3 [0,0,0,504075,129347750][0, 0, 0, -504075, 129347750] 607199886722/41558445607199886722/41558445 969475404960000000969475404960000000 [2][2] 589824589824 2.19962.1996  
55800.bd3 55800bn2 [0,0,0,99075,9567250][0, 0, 0, -99075, -9567250] 9220796644/19460259220796644/1946025 2269843560000000022698435600000000 [2,2][2, 2] 294912294912 1.85311.8531  
55800.bd4 55800bn1 [0,0,0,13425,904750][0, 0, 0, 13425, -904750] 91765424/17437591765424/174375 508477500000000-508477500000000 [2][2] 147456147456 1.50651.5065 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 55800.bd have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
5511
31311+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+7T2 1 + 7 T^{2} 1.7.a
1111 1+11T2 1 + 11 T^{2} 1.11.a
1313 12T+13T2 1 - 2 T + 13 T^{2} 1.13.ac
1717 16T+17T2 1 - 6 T + 17 T^{2} 1.17.ag
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 14T+23T2 1 - 4 T + 23 T^{2} 1.23.ae
2929 1+2T+29T2 1 + 2 T + 29 T^{2} 1.29.c
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 55800.bd do not have complex multiplication.

Modular form 55800.2.a.bd

Copy content sage:E.q_eigenform(10)
 
q+2q13+6q17+4q19+O(q20)q + 2 q^{13} + 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.