Properties

Label 55800.bd
Number of curves $4$
Conductor $55800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bd1")
 
E.isogeny_class()
 

Elliptic curves in class 55800.bd

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55800.bd1 55800bn4 \([0, 0, 0, -1494075, -702882250]\) \(15811147933922/1016955\) \(23723526240000000\) \([2]\) \(589824\) \(2.1996\)  
55800.bd2 55800bn3 \([0, 0, 0, -504075, 129347750]\) \(607199886722/41558445\) \(969475404960000000\) \([2]\) \(589824\) \(2.1996\)  
55800.bd3 55800bn2 \([0, 0, 0, -99075, -9567250]\) \(9220796644/1946025\) \(22698435600000000\) \([2, 2]\) \(294912\) \(1.8531\)  
55800.bd4 55800bn1 \([0, 0, 0, 13425, -904750]\) \(91765424/174375\) \(-508477500000000\) \([2]\) \(147456\) \(1.5065\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 55800.bd have rank \(1\).

Complex multiplication

The elliptic curves in class 55800.bd do not have complex multiplication.

Modular form 55800.2.a.bd

sage: E.q_eigenform(10)
 
\(q + 2 q^{13} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.