Show commands:
SageMath
E = EllipticCurve("bk1")
E.isogeny_class()
Elliptic curves in class 5610.bk
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5610.bk1 | 5610bl2 | \([1, 0, 0, -9285, 236097]\) | \(88526309511756241/26991954000000\) | \(26991954000000\) | \([2]\) | \(21504\) | \(1.2821\) | |
5610.bk2 | 5610bl1 | \([1, 0, 0, 1595, 25025]\) | \(448733772344879/527357952000\) | \(-527357952000\) | \([2]\) | \(10752\) | \(0.93554\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 5610.bk have rank \(1\).
Complex multiplication
The elliptic curves in class 5610.bk do not have complex multiplication.Modular form 5610.2.a.bk
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.