Properties

Label 5610.bk
Number of curves 22
Conductor 56105610
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bk1")
 
E.isogeny_class()
 

Elliptic curves in class 5610.bk

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5610.bk1 5610bl2 [1,0,0,9285,236097][1, 0, 0, -9285, 236097] 88526309511756241/2699195400000088526309511756241/26991954000000 2699195400000026991954000000 [2][2] 2150421504 1.28211.2821  
5610.bk2 5610bl1 [1,0,0,1595,25025][1, 0, 0, 1595, 25025] 448733772344879/527357952000448733772344879/527357952000 527357952000-527357952000 [2][2] 1075210752 0.935540.93554 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5610.bk have rank 11.

Complex multiplication

The elliptic curves in class 5610.bk do not have complex multiplication.

Modular form 5610.2.a.bk

sage: E.q_eigenform(10)
 
q+q2+q3+q4+q5+q64q7+q8+q9+q10+q11+q122q134q14+q15+q16q17+q182q19+O(q20)q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - 4 q^{7} + q^{8} + q^{9} + q^{10} + q^{11} + q^{12} - 2 q^{13} - 4 q^{14} + q^{15} + q^{16} - q^{17} + q^{18} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.