E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 5610.c
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
5610.c1 |
5610a4 |
[1,1,0,−11968,498988] |
189602977175292169/1402500 |
1402500 |
[2] |
8192 |
0.77449
|
|
5610.c2 |
5610a3 |
[1,1,0,−1048,532] |
127483771761289/73369857660 |
73369857660 |
[2] |
8192 |
0.77449
|
|
5610.c3 |
5610a2 |
[1,1,0,−748,7552] |
46380496070089/125888400 |
125888400 |
[2,2] |
4096 |
0.42792
|
|
5610.c4 |
5610a1 |
[1,1,0,−28,208] |
−2565726409/19388160 |
−19388160 |
[2] |
2048 |
0.081343
|
Γ0(N)-optimal |
The elliptic curves in class 5610.c have
rank 1.
The elliptic curves in class 5610.c do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.