Properties

Label 5610.c
Number of curves 44
Conductor 56105610
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 5610.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5610.c1 5610a4 [1,1,0,11968,498988][1, 1, 0, -11968, 498988] 189602977175292169/1402500189602977175292169/1402500 14025001402500 [2][2] 81928192 0.774490.77449  
5610.c2 5610a3 [1,1,0,1048,532][1, 1, 0, -1048, 532] 127483771761289/73369857660127483771761289/73369857660 7336985766073369857660 [2][2] 81928192 0.774490.77449  
5610.c3 5610a2 [1,1,0,748,7552][1, 1, 0, -748, 7552] 46380496070089/12588840046380496070089/125888400 125888400125888400 [2,2][2, 2] 40964096 0.427920.42792  
5610.c4 5610a1 [1,1,0,28,208][1, 1, 0, -28, 208] 2565726409/19388160-2565726409/19388160 19388160-19388160 [2][2] 20482048 0.0813430.081343 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5610.c have rank 11.

Complex multiplication

The elliptic curves in class 5610.c do not have complex multiplication.

Modular form 5610.2.a.c

sage: E.q_eigenform(10)
 
qq2q3+q4q5+q6q8+q9+q10q11q126q13+q15+q16q17q18+8q19+O(q20)q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} + q^{9} + q^{10} - q^{11} - q^{12} - 6 q^{13} + q^{15} + q^{16} - q^{17} - q^{18} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.