Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 5610.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5610.c1 | 5610a4 | \([1, 1, 0, -11968, 498988]\) | \(189602977175292169/1402500\) | \(1402500\) | \([2]\) | \(8192\) | \(0.77449\) | |
5610.c2 | 5610a3 | \([1, 1, 0, -1048, 532]\) | \(127483771761289/73369857660\) | \(73369857660\) | \([2]\) | \(8192\) | \(0.77449\) | |
5610.c3 | 5610a2 | \([1, 1, 0, -748, 7552]\) | \(46380496070089/125888400\) | \(125888400\) | \([2, 2]\) | \(4096\) | \(0.42792\) | |
5610.c4 | 5610a1 | \([1, 1, 0, -28, 208]\) | \(-2565726409/19388160\) | \(-19388160\) | \([2]\) | \(2048\) | \(0.081343\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 5610.c have rank \(1\).
Complex multiplication
The elliptic curves in class 5610.c do not have complex multiplication.Modular form 5610.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.