Properties

Label 5610.i
Number of curves 22
Conductor 56105610
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 5610.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5610.i1 5610g2 [1,1,0,185702,30879084][1, 1, 0, -185702, -30879084] 708234550511150304361/23696640000708234550511150304361/23696640000 2369664000023696640000 [2][2] 2816028160 1.49031.4903  
5610.i2 5610g1 [1,1,0,11622,484716][1, 1, 0, -11622, -484716] 173629978755828841/1000026931200173629978755828841/1000026931200 10000269312001000026931200 [2][2] 1408014080 1.14371.1437 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5610.i have rank 00.

Complex multiplication

The elliptic curves in class 5610.i do not have complex multiplication.

Modular form 5610.2.a.i

sage: E.q_eigenform(10)
 
qq2q3+q4+q5+q6+2q7q8+q9q10q11q124q132q14q15+q16q17q186q19+O(q20)q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + 2 q^{7} - q^{8} + q^{9} - q^{10} - q^{11} - q^{12} - 4 q^{13} - 2 q^{14} - q^{15} + q^{16} - q^{17} - q^{18} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.