Properties

Label 5610.q
Number of curves 88
Conductor 56105610
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("q1")
 
E.isogeny_class()
 

Elliptic curves in class 5610.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5610.q1 5610t7 [1,0,1,201236483,1098790303234][1, 0, 1, -201236483, -1098790303234] 901247067798311192691198986281/552431869440901247067798311192691198986281/552431869440 552431869440552431869440 [2][2] 663552663552 2.96082.9608  
5610.q2 5610t8 [1,0,1,12661763,16927055362][1, 0, 1, -12661763, -16927055362] 224494757451893010998773801/6152490825146276160000224494757451893010998773801/6152490825146276160000 61524908251462761600006152490825146276160000 [2][2] 663552663552 2.96082.9608  
5610.q3 5610t6 [1,0,1,12577283,17169377794][1, 0, 1, -12577283, -17169377794] 220031146443748723000125481/172266701724057600220031146443748723000125481/172266701724057600 172266701724057600172266701724057600 [2,2][2, 2] 331776331776 2.61422.6142  
5610.q4 5610t4 [1,0,1,2484908,1506795694][1, 0, 1, -2484908, -1506795694] 1696892787277117093383481/14405386249149390001696892787277117093383481/1440538624914939000 14405386249149390001440538624914939000 [6][6] 221184221184 2.41152.4115  
5610.q5 5610t5 [1,0,1,1627388,790397138][1, 0, 1, -1627388, 790397138] 476646772170172569823801/5862293314453125000476646772170172569823801/5862293314453125000 58622933144531250005862293314453125000 [6][6] 221184221184 2.41152.4115  
5610.q6 5610t3 [1,0,1,780803,272099842][1, 0, 1, -780803, -272099842] 52643812360427830814761/1504091705903677440-52643812360427830814761/1504091705903677440 1504091705903677440-1504091705903677440 [2][2] 165888165888 2.26762.2676  
5610.q7 5610t2 [1,0,1,189908,12291694][1, 0, 1, -189908, -12291694] 757443433548897303481/373234243041000000757443433548897303481/373234243041000000 373234243041000000373234243041000000 [2,6][2, 6] 110592110592 2.06492.0649  
5610.q8 5610t1 [1,0,1,43372,1467502][1, 0, 1, 43372, -1467502] 9023321954633914439/61567567395840009023321954633914439/6156756739584000 6156756739584000-6156756739584000 [6][6] 5529655296 1.71831.7183 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5610.q have rank 00.

Complex multiplication

The elliptic curves in class 5610.q do not have complex multiplication.

Modular form 5610.2.a.q

sage: E.q_eigenform(10)
 
qq2+q3+q4+q5q64q7q8+q9q10+q11+q12+2q13+4q14+q15+q16q17q184q19+O(q20)q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - 4 q^{7} - q^{8} + q^{9} - q^{10} + q^{11} + q^{12} + 2 q^{13} + 4 q^{14} + q^{15} + q^{16} - q^{17} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1423124612412123461222166236312614122412364112244421212163663226121212644321)\left(\begin{array}{rrrrrrrr} 1 & 4 & 2 & 3 & 12 & 4 & 6 & 12 \\ 4 & 1 & 2 & 12 & 3 & 4 & 6 & 12 \\ 2 & 2 & 1 & 6 & 6 & 2 & 3 & 6 \\ 3 & 12 & 6 & 1 & 4 & 12 & 2 & 4 \\ 12 & 3 & 6 & 4 & 1 & 12 & 2 & 4 \\ 4 & 4 & 2 & 12 & 12 & 1 & 6 & 3 \\ 6 & 6 & 3 & 2 & 2 & 6 & 1 & 2 \\ 12 & 12 & 6 & 4 & 4 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.