Show commands:
SageMath
E = EllipticCurve("q1")
E.isogeny_class()
Elliptic curves in class 5610.q
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5610.q1 | 5610t7 | \([1, 0, 1, -201236483, -1098790303234]\) | \(901247067798311192691198986281/552431869440\) | \(552431869440\) | \([2]\) | \(663552\) | \(2.9608\) | |
5610.q2 | 5610t8 | \([1, 0, 1, -12661763, -16927055362]\) | \(224494757451893010998773801/6152490825146276160000\) | \(6152490825146276160000\) | \([2]\) | \(663552\) | \(2.9608\) | |
5610.q3 | 5610t6 | \([1, 0, 1, -12577283, -17169377794]\) | \(220031146443748723000125481/172266701724057600\) | \(172266701724057600\) | \([2, 2]\) | \(331776\) | \(2.6142\) | |
5610.q4 | 5610t4 | \([1, 0, 1, -2484908, -1506795694]\) | \(1696892787277117093383481/1440538624914939000\) | \(1440538624914939000\) | \([6]\) | \(221184\) | \(2.4115\) | |
5610.q5 | 5610t5 | \([1, 0, 1, -1627388, 790397138]\) | \(476646772170172569823801/5862293314453125000\) | \(5862293314453125000\) | \([6]\) | \(221184\) | \(2.4115\) | |
5610.q6 | 5610t3 | \([1, 0, 1, -780803, -272099842]\) | \(-52643812360427830814761/1504091705903677440\) | \(-1504091705903677440\) | \([2]\) | \(165888\) | \(2.2676\) | |
5610.q7 | 5610t2 | \([1, 0, 1, -189908, -12291694]\) | \(757443433548897303481/373234243041000000\) | \(373234243041000000\) | \([2, 6]\) | \(110592\) | \(2.0649\) | |
5610.q8 | 5610t1 | \([1, 0, 1, 43372, -1467502]\) | \(9023321954633914439/6156756739584000\) | \(-6156756739584000\) | \([6]\) | \(55296\) | \(1.7183\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 5610.q have rank \(0\).
Complex multiplication
The elliptic curves in class 5610.q do not have complex multiplication.Modular form 5610.2.a.q
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 4 & 2 & 3 & 12 & 4 & 6 & 12 \\ 4 & 1 & 2 & 12 & 3 & 4 & 6 & 12 \\ 2 & 2 & 1 & 6 & 6 & 2 & 3 & 6 \\ 3 & 12 & 6 & 1 & 4 & 12 & 2 & 4 \\ 12 & 3 & 6 & 4 & 1 & 12 & 2 & 4 \\ 4 & 4 & 2 & 12 & 12 & 1 & 6 & 3 \\ 6 & 6 & 3 & 2 & 2 & 6 & 1 & 2 \\ 12 & 12 & 6 & 4 & 4 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.