Properties

Label 5610t2
Conductor 56105610
Discriminant 3.732×10173.732\times 10^{17}
j-invariant 757443433548897303481373234243041000000 \frac{757443433548897303481}{373234243041000000}
CM no
Rank 00
Torsion structure Z/2ZZ/6Z\Z/{2}\Z \oplus \Z/{6}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3189908x12291694y^2+xy+y=x^3-189908x-12291694 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3189908xz212291694z3y^2z+xyz+yz^2=x^3-189908xz^2-12291694z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3246120147x572742903186y^2=x^3-246120147x-572742903186 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -189908, -12291694])
 
gp: E = ellinit([1, 0, 1, -189908, -12291694])
 
magma: E := EllipticCurve([1, 0, 1, -189908, -12291694]);
 
oscar: E = elliptic_curve([1, 0, 1, -189908, -12291694])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2ZZ/6Z\Z/{2}\Z \oplus \Z/{6}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(465,233)(465, -233)0022
(135,3367)(-135, 3367)0066

Integral points

(399,199) \left(-399, 199\right) , (300,4357) \left(-300, 4357\right) , (300,4058) \left(-300, -4058\right) , (135,3367) \left(-135, 3367\right) , (135,3233) \left(-135, -3233\right) , (465,233) \left(465, -233\right) , (690,13267) \left(690, 13267\right) , (690,13958) \left(690, -13958\right) , (2505,122167) \left(2505, 122167\right) , (2505,124673) \left(2505, -124673\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  5610 5610  = 23511172 \cdot 3 \cdot 5 \cdot 11 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  373234243041000000373234243041000000 = 2636561161722^{6} \cdot 3^{6} \cdot 5^{6} \cdot 11^{6} \cdot 17^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  757443433548897303481373234243041000000 \frac{757443433548897303481}{373234243041000000}  = 26365673116133172109391932^{-6} \cdot 3^{-6} \cdot 5^{-6} \cdot 7^{3} \cdot 11^{-6} \cdot 13^{3} \cdot 17^{-2} \cdot 109^{3} \cdot 919^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.06490771429803457840818029582.0649077142980345784081802958
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 2.06490771429803457840818029582.0649077142980345784081802958
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.00699507095973061.0069950709597306
Szpiro ratio: σm\sigma_{m} ≈ 5.5693670430086525.569367043008652

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.240505008898642833269463272560.24050500889864283326946327256
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 864 864  = 2(23)(23)(23)2 2\cdot( 2 \cdot 3 )\cdot( 2 \cdot 3 )\cdot( 2 \cdot 3 )\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 1212
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.44303005339185699961677963541.4430300533918569996167796354
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.443030053L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2405051.0000008641221.443030053\displaystyle 1.443030053 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.240505 \cdot 1.000000 \cdot 864}{12^2} \approx 1.443030053

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   5610.2.a.q

qq2+q3+q4+q5q64q7q8+q9q10+q11+q12+2q13+4q14+q15+q16q17q184q19+O(q20) q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - 4 q^{7} - q^{8} + q^{9} - q^{10} + q^{11} + q^{12} + 2 q^{13} + 4 q^{14} + q^{15} + q^{16} - q^{17} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 110592
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I6I_{6} nonsplit multiplicative 1 1 6 6
33 66 I6I_{6} split multiplicative -1 1 6 6
55 66 I6I_{6} split multiplicative -1 1 6 6
1111 66 I6I_{6} split multiplicative -1 1 6 6
1717 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 2.6.0.1
33 3B.1.1 3.8.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[16831, 12, 11226, 73], [14967, 10, 3742, 3], [9, 4, 22424, 22433], [14521, 12, 19806, 73], [1, 0, 12, 1], [8977, 12, 8982, 73], [22429, 12, 22428, 13], [1, 12, 0, 1], [11227, 6, 22434, 22435], [18361, 6, 0, 1]]
 
GL(2,Integers(22440)).subgroup(gens)
 
Gens := [[16831, 12, 11226, 73], [14967, 10, 3742, 3], [9, 4, 22424, 22433], [14521, 12, 19806, 73], [1, 0, 12, 1], [8977, 12, 8982, 73], [22429, 12, 22428, 13], [1, 12, 0, 1], [11227, 6, 22434, 22435], [18361, 6, 0, 1]];
 
sub<GL(2,Integers(22440))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 22440=23351117 22440 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 17 , index 384384, genus 55, and generators

(16831121122673),(149671037423),(942242422433),(14521121980673),(10121),(897712898273),(22429122242813),(11201),(1122762243422435),(18361601)\left(\begin{array}{rr} 16831 & 12 \\ 11226 & 73 \end{array}\right),\left(\begin{array}{rr} 14967 & 10 \\ 3742 & 3 \end{array}\right),\left(\begin{array}{rr} 9 & 4 \\ 22424 & 22433 \end{array}\right),\left(\begin{array}{rr} 14521 & 12 \\ 19806 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 8977 & 12 \\ 8982 & 73 \end{array}\right),\left(\begin{array}{rr} 22429 & 12 \\ 22428 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11227 & 6 \\ 22434 & 22435 \end{array}\right),\left(\begin{array}{rr} 18361 & 6 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[22440])K:=\Q(E[22440]) is a degree-9529668403200095296684032000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/22440Z)\GL_2(\Z/22440\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 1 1
33 split multiplicative 44 17 17
55 split multiplicative 66 1122=231117 1122 = 2 \cdot 3 \cdot 11 \cdot 17
1111 split multiplicative 1212 510=23517 510 = 2 \cdot 3 \cdot 5 \cdot 17
1717 nonsplit multiplicative 1818 330=23511 330 = 2 \cdot 3 \cdot 5 \cdot 11

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 5610t consists of 8 curves linked by isogenies of degrees dividing 12.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/6Z\cong \Z/{2}\Z \oplus \Z/{6}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
44 Q(6,11)\Q(\sqrt{-6}, \sqrt{-11}) Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
44 Q(11,85)\Q(\sqrt{11}, \sqrt{-85}) Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
44 Q(6,85)\Q(\sqrt{6}, \sqrt{85}) Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
66 6.0.2255067.2 Z/6ZZ/6Z\Z/6\Z \oplus \Z/6\Z not in database
99 9.3.33173450251082263546875.3 Z/2ZZ/18Z\Z/2\Z \oplus \Z/18\Z not in database
1616 deg 16 Z/4ZZ/12Z\Z/4\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/2ZZ/24Z\Z/2\Z \oplus \Z/24\Z not in database
1616 deg 16 Z/2ZZ/24Z\Z/2\Z \oplus \Z/24\Z not in database
1616 deg 16 Z/2ZZ/24Z\Z/2\Z \oplus \Z/24\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 11 17
Reduction type nonsplit split split split nonsplit
λ\lambda-invariant(s) 5 3 1 3 0
μ\mu-invariant(s) 0 0 0 0 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p5p\ge 5 of good reduction are zero.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.