y 2 = x 3 − x 2 − 36550024 x − 85008330512 y^2=x^3-x^2-36550024x-85008330512 y 2 = x 3 − x 2 − 3 6 5 5 0 0 2 4 x − 8 5 0 0 8 3 3 0 5 1 2
(homogenize , simplify )
y 2 z = x 3 − x 2 z − 36550024 x z 2 − 85008330512 z 3 y^2z=x^3-x^2z-36550024xz^2-85008330512z^3 y 2 z = x 3 − x 2 z − 3 6 5 5 0 0 2 4 x z 2 − 8 5 0 0 8 3 3 0 5 1 2 z 3
(dehomogenize , simplify )
y 2 = x 3 − 2960551971 x − 61979954599134 y^2=x^3-2960551971x-61979954599134 y 2 = x 3 − 2 9 6 0 5 5 1 9 7 1 x − 6 1 9 7 9 9 5 4 5 9 9 1 3 4
(homogenize , minimize )
sage: E = EllipticCurve([0, -1, 0, -36550024, -85008330512])
gp: E = ellinit([0, -1, 0, -36550024, -85008330512])
magma: E := EllipticCurve([0, -1, 0, -36550024, -85008330512]);
oscar: E = elliptic_curve([0, -1, 0, -36550024, -85008330512])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 381333639852724 / 11571520041 , 7311094279349567253760 / 1244759982330411 ) (381333639852724/11571520041, 7311094279349567253760/1244759982330411) ( 3 8 1 3 3 3 6 3 9 8 5 2 7 2 4 / 1 1 5 7 1 5 2 0 0 4 1 , 7 3 1 1 0 9 4 2 7 9 3 4 9 5 6 7 2 5 3 7 6 0 / 1 2 4 4 7 5 9 9 8 2 3 3 0 4 1 1 ) 30.556193545424620791116106726 30.556193545424620791116106726 3 0 . 5 5 6 1 9 3 5 4 5 4 2 4 6 2 0 7 9 1 1 1 6 1 0 6 7 2 6 ∞ \infty ∞
( − 3436 , 0 ) (-3436, 0) ( − 3 4 3 6 , 0 ) 0 0 0 2 2 2
( − 3436 , 0 ) \left(-3436, 0\right) ( − 3 4 3 6 , 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
56784 56784 5 6 7 8 4 = 2 4 ⋅ 3 ⋅ 7 ⋅ 1 3 2 2^{4} \cdot 3 \cdot 7 \cdot 13^{2} 2 4 ⋅ 3 ⋅ 7 ⋅ 1 3 2
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
2242650152940739756032 2242650152940739756032 2 2 4 2 6 5 0 1 5 2 9 4 0 7 3 9 7 5 6 0 3 2 = 2 22 ⋅ 3 ⋅ 7 5 ⋅ 1 3 9 2^{22} \cdot 3 \cdot 7^{5} \cdot 13^{9} 2 2 2 ⋅ 3 ⋅ 7 5 ⋅ 1 3 9
sage: E.discriminant().factor()
j-invariant :
j j j
=
124318741396429 51631104 \frac{124318741396429}{51631104} 5 1 6 3 1 1 0 4 1 2 4 3 1 8 7 4 1 3 9 6 4 2 9 = 2 − 10 ⋅ 3 − 1 ⋅ 7 − 5 ⋅ 2 9 3 ⋅ 172 1 3 2^{-10} \cdot 3^{-1} \cdot 7^{-5} \cdot 29^{3} \cdot 1721^{3} 2 − 1 0 ⋅ 3 − 1 ⋅ 7 − 5 ⋅ 2 9 3 ⋅ 1 7 2 1 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 3.0586677923428437297027210330 3.0586677923428437297027210330 3 . 0 5 8 6 6 7 7 9 2 3 4 2 8 4 3 7 2 9 7 0 2 7 2 1 0 3 3 0
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.44180859368674586824537333037 0.44180859368674586824537333037 0 . 4 4 1 8 0 8 5 9 3 6 8 6 7 4 5 8 6 8 2 4 5 3 7 3 3 3 0 3 7
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.0121377482115463 1.0121377482115463 1 . 0 1 2 1 3 7 7 4 8 2 1 1 5 4 6 3
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 5.8332075144063555 5.8332075144063555 5 . 8 3 3 2 0 7 5 1 4 4 0 6 3 5 5 5
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
Mordell-Weil rank :
r r r = 1 1 1
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 30.556193545424620791116106726 30.556193545424620791116106726 3 0 . 5 5 6 1 9 3 5 4 5 4 2 4 6 2 0 7 9 1 1 1 6 1 0 6 7 2 6
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.061402840484042333172007115745 0.061402840484042333172007115745 0 . 0 6 1 4 0 2 8 4 0 4 8 4 0 4 2 3 3 3 1 7 2 0 0 7 1 1 5 7 4 5
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 8 8 8
= 2 2 ⋅ 1 ⋅ 1 ⋅ 2 2^{2}\cdot1\cdot1\cdot2 2 2 ⋅ 1 ⋅ 1 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 3.7524741561384638781606667320 3.7524741561384638781606667320 3 . 7 5 2 4 7 4 1 5 6 1 3 8 4 6 3 8 7 8 1 6 0 6 6 6 7 3 2 0
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
3.752474156 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.061403 ⋅ 30.556194 ⋅ 8 2 2 ≈ 3.752474156 \displaystyle 3.752474156 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.061403 \cdot 30.556194 \cdot 8}{2^2} \approx 3.752474156 3 . 7 5 2 4 7 4 1 5 6 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 0 6 1 4 0 3 ⋅ 3 0 . 5 5 6 1 9 4 ⋅ 8 ≈ 3 . 7 5 2 4 7 4 1 5 6
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
56784.2.a.f
q − q 3 − 2 q 5 − q 7 + q 9 + 2 q 15 + 2 q 17 + 4 q 19 + O ( q 20 ) q - q^{3} - 2 q^{5} - q^{7} + q^{9} + 2 q^{15} + 2 q^{17} + 4 q^{19} + O(q^{20}) q − q 3 − 2 q 5 − q 7 + q 9 + 2 q 1 5 + 2 q 1 7 + 4 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[10901, 20, 10900, 21], [6, 13, 7195, 10736], [8737, 20, 0, 1], [5461, 6, 0, 1], [1, 10, 10, 101], [1, 0, 20, 1], [11, 16, 10680, 10571], [3126, 13, 3035, 10736], [822, 10915, 5585, 10838], [2729, 10900, 0, 10919], [1, 20, 0, 1]]
GL(2,Integers(10920)).subgroup(gens)
Gens := [[10901, 20, 10900, 21], [6, 13, 7195, 10736], [8737, 20, 0, 1], [5461, 6, 0, 1], [1, 10, 10, 101], [1, 0, 20, 1], [11, 16, 10680, 10571], [3126, 13, 3035, 10736], [822, 10915, 5585, 10838], [2729, 10900, 0, 10919], [1, 20, 0, 1]];
sub<GL(2,Integers(10920))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 10920 = 2 3 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 13 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 1 0 9 2 0 = 2 3 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 1 3 , index 288 288 2 8 8 , genus 5 5 5 , and generators
( 10901 20 10900 21 ) , ( 6 13 7195 10736 ) , ( 8737 20 0 1 ) , ( 5461 6 0 1 ) , ( 1 10 10 101 ) , ( 1 0 20 1 ) , ( 11 16 10680 10571 ) , ( 3126 13 3035 10736 ) , ( 822 10915 5585 10838 ) , ( 2729 10900 0 10919 ) , ( 1 20 0 1 ) \left(\begin{array}{rr}
10901 & 20 \\
10900 & 21
\end{array}\right),\left(\begin{array}{rr}
6 & 13 \\
7195 & 10736
\end{array}\right),\left(\begin{array}{rr}
8737 & 20 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
5461 & 6 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 10 \\
10 & 101
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
20 & 1
\end{array}\right),\left(\begin{array}{rr}
11 & 16 \\
10680 & 10571
\end{array}\right),\left(\begin{array}{rr}
3126 & 13 \\
3035 & 10736
\end{array}\right),\left(\begin{array}{rr}
822 & 10915 \\
5585 & 10838
\end{array}\right),\left(\begin{array}{rr}
2729 & 10900 \\
0 & 10919
\end{array}\right),\left(\begin{array}{rr}
1 & 20 \\
0 & 1
\end{array}\right) ( 1 0 9 0 1 1 0 9 0 0 2 0 2 1 ) , ( 6 7 1 9 5 1 3 1 0 7 3 6 ) , ( 8 7 3 7 0 2 0 1 ) , ( 5 4 6 1 0 6 1 ) , ( 1 1 0 1 0 1 0 1 ) , ( 1 2 0 0 1 ) , ( 1 1 1 0 6 8 0 1 6 1 0 5 7 1 ) , ( 3 1 2 6 3 0 3 5 1 3 1 0 7 3 6 ) , ( 8 2 2 5 5 8 5 1 0 9 1 5 1 0 8 3 8 ) , ( 2 7 2 9 0 1 0 9 0 0 1 0 9 1 9 ) , ( 1 0 2 0 1 ) .
The torsion field K : = Q ( E [ 10920 ] ) K:=\Q(E[10920]) K : = Q ( E [ 1 0 9 2 0 ] ) is a degree-6492405104640 6492405104640 6 4 9 2 4 0 5 1 0 4 6 4 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 10920 Z ) \GL_2(\Z/10920\Z) GL 2 ( Z / 1 0 9 2 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
273 = 3 ⋅ 7 ⋅ 13 273 = 3 \cdot 7 \cdot 13 2 7 3 = 3 ⋅ 7 ⋅ 1 3
3 3 3
nonsplit multiplicative
4 4 4
18928 = 2 4 ⋅ 7 ⋅ 1 3 2 18928 = 2^{4} \cdot 7 \cdot 13^{2} 1 8 9 2 8 = 2 4 ⋅ 7 ⋅ 1 3 2
5 5 5
good
2 2 2
8112 = 2 4 ⋅ 3 ⋅ 1 3 2 8112 = 2^{4} \cdot 3 \cdot 13^{2} 8 1 1 2 = 2 4 ⋅ 3 ⋅ 1 3 2
7 7 7
nonsplit multiplicative
8 8 8
8112 = 2 4 ⋅ 3 ⋅ 1 3 2 8112 = 2^{4} \cdot 3 \cdot 13^{2} 8 1 1 2 = 2 4 ⋅ 3 ⋅ 1 3 2
13 13 1 3
additive
62 62 6 2
336 = 2 4 ⋅ 3 ⋅ 7 336 = 2^{4} \cdot 3 \cdot 7 3 3 6 = 2 4 ⋅ 3 ⋅ 7
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2, 5 and 10.
Its isogeny class 56784bq
consists of 4 curves linked by isogenies of
degrees dividing 10.
The minimal quadratic twist of this elliptic curve is
7098y3 , its twist by − 52 -52 − 5 2 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 273 ) \Q(\sqrt{273}) Q ( 2 7 3 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.0.11811072.3
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
4 4 4
4.0.4394000.1
Z / 10 Z \Z/10\Z Z / 1 0 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 10 Z \Z/2\Z \oplus \Z/10\Z Z / 2 Z ⊕ Z / 1 0 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 20 Z \Z/20\Z Z / 2 0 Z
not in database
20 20 2 0
20.4.220338485571341388525779700000000000000000000.2
Z / 10 Z \Z/10\Z Z / 1 0 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.