Properties

Label 56784bq3
Conductor 5678456784
Discriminant 2.243×10212.243\times 10^{21}
j-invariant 12431874139642951631104 \frac{124318741396429}{51631104}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x236550024x85008330512y^2=x^3-x^2-36550024x-85008330512 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z36550024xz285008330512z3y^2z=x^3-x^2z-36550024xz^2-85008330512z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x32960551971x61979954599134y^2=x^3-2960551971x-61979954599134 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -36550024, -85008330512])
 
gp: E = ellinit([0, -1, 0, -36550024, -85008330512])
 
magma: E := EllipticCurve([0, -1, 0, -36550024, -85008330512]);
 
oscar: E = elliptic_curve([0, -1, 0, -36550024, -85008330512])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(381333639852724/11571520041,7311094279349567253760/1244759982330411)(381333639852724/11571520041, 7311094279349567253760/1244759982330411)30.55619354542462079111610672630.556193545424620791116106726\infty
(3436,0)(-3436, 0)0022

Integral points

(3436,0) \left(-3436, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  56784 56784  = 24371322^{4} \cdot 3 \cdot 7 \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  22426501529407397560322242650152940739756032 = 2223751392^{22} \cdot 3 \cdot 7^{5} \cdot 13^{9}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  12431874139642951631104 \frac{124318741396429}{51631104}  = 2103175293172132^{-10} \cdot 3^{-1} \cdot 7^{-5} \cdot 29^{3} \cdot 1721^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.05866779234284372970272103303.0586677923428437297027210330
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.441808593686745868245373330370.44180859368674586824537333037
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.01213774821154631.0121377482115463
Szpiro ratio: σm\sigma_{m} ≈ 5.83320751440635555.8332075144063555

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 30.55619354542462079111610672630.556193545424620791116106726
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0614028404840423331720071157450.061402840484042333172007115745
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 22112 2^{2}\cdot1\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.75247415613846387816066673203.7524741561384638781606667320
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.752474156L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.06140330.5561948223.752474156\displaystyle 3.752474156 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.061403 \cdot 30.556194 \cdot 8}{2^2} \approx 3.752474156

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 56784.2.a.f

qq32q5q7+q9+2q15+2q17+4q19+O(q20) q - q^{3} - 2 q^{5} - q^{7} + q^{9} + 2 q^{15} + 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 3744000
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I14I_{14}^{*} additive -1 4 22 10
33 11 I1I_{1} nonsplit multiplicative 1 1 1 1
77 11 I5I_{5} nonsplit multiplicative 1 1 5 5
1313 22 IIIIII^{*} additive -1 2 9 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1
55 5B 5.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[10901, 20, 10900, 21], [6, 13, 7195, 10736], [8737, 20, 0, 1], [5461, 6, 0, 1], [1, 10, 10, 101], [1, 0, 20, 1], [11, 16, 10680, 10571], [3126, 13, 3035, 10736], [822, 10915, 5585, 10838], [2729, 10900, 0, 10919], [1, 20, 0, 1]]
 
GL(2,Integers(10920)).subgroup(gens)
 
Gens := [[10901, 20, 10900, 21], [6, 13, 7195, 10736], [8737, 20, 0, 1], [5461, 6, 0, 1], [1, 10, 10, 101], [1, 0, 20, 1], [11, 16, 10680, 10571], [3126, 13, 3035, 10736], [822, 10915, 5585, 10838], [2729, 10900, 0, 10919], [1, 20, 0, 1]];
 
sub<GL(2,Integers(10920))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 10920=2335713 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 , index 288288, genus 55, and generators

(10901201090021),(613719510736),(87372001),(5461601),(11010101),(10201),(11161068010571),(312613303510736),(82210915558510838),(272910900010919),(12001)\left(\begin{array}{rr} 10901 & 20 \\ 10900 & 21 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 7195 & 10736 \end{array}\right),\left(\begin{array}{rr} 8737 & 20 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5461 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 10680 & 10571 \end{array}\right),\left(\begin{array}{rr} 3126 & 13 \\ 3035 & 10736 \end{array}\right),\left(\begin{array}{rr} 822 & 10915 \\ 5585 & 10838 \end{array}\right),\left(\begin{array}{rr} 2729 & 10900 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[10920])K:=\Q(E[10920]) is a degree-64924051046406492405104640 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/10920Z)\GL_2(\Z/10920\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 273=3713 273 = 3 \cdot 7 \cdot 13
33 nonsplit multiplicative 44 18928=247132 18928 = 2^{4} \cdot 7 \cdot 13^{2}
55 good 22 8112=243132 8112 = 2^{4} \cdot 3 \cdot 13^{2}
77 nonsplit multiplicative 88 8112=243132 8112 = 2^{4} \cdot 3 \cdot 13^{2}
1313 additive 6262 336=2437 336 = 2^{4} \cdot 3 \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 5 and 10.
Its isogeny class 56784bq consists of 4 curves linked by isogenies of degrees dividing 10.

Twists

The minimal quadratic twist of this elliptic curve is 7098y3, its twist by 52-52.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(273)\Q(\sqrt{273}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.0.11811072.3 Z/4Z\Z/4\Z not in database
44 4.0.4394000.1 Z/10Z\Z/10\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
88 deg 8 Z/2ZZ/10Z\Z/2\Z \oplus \Z/10\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/20Z\Z/20\Z not in database
2020 20.4.220338485571341388525779700000000000000000000.2 Z/10Z\Z/10\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add nonsplit ord nonsplit ss add ord ord ord ss ss ord ss ord ord
λ\lambda-invariant(s) - 1 5 1 1,1 - 1 1 1 1,1 1,1 1 1,1 1 1
μ\mu-invariant(s) - 0 1 0 0,0 - 0 0 0 0,0 0,0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.