Properties

Label 56784bz1
Conductor 5678456784
Discriminant 3.220×10143.220\times 10^{14}
j-invariant 3687284373372752512 \frac{368728437337}{2752512}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x273064x7528080y^2=x^3-x^2-73064x-7528080 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z73064xz27528080z3y^2z=x^3-x^2z-73064xz^2-7528080z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x35918211x5505724926y^2=x^3-5918211x-5505724926 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -73064, -7528080])
 
gp: E = ellinit([0, -1, 0, -73064, -7528080])
 
magma: E := EllipticCurve([0, -1, 0, -73064, -7528080]);
 
oscar: E = elliptic_curve([0, -1, 0, -73064, -7528080])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(587/4,883/8)(-587/4, 883/8)5.96114493129926690374693236365.9611449312992669037469323636\infty

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  56784 56784  = 24371322^{4} \cdot 3 \cdot 7 \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  322004972470272322004972470272 = 229371342^{29} \cdot 3 \cdot 7 \cdot 13^{4}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  3687284373372752512 \frac{368728437337}{2752512}  = 2173171132129732^{-17} \cdot 3^{-1} \cdot 7^{-1} \cdot 13^{2} \cdot 1297^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.61414764136418799198880497311.6141476413641879919888049731
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.0660173416503971038870770377880.066017341650397103887077037788
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.99450074248093350.9945007424809335
Szpiro ratio: σm\sigma_{m} ≈ 4.1299761652866484.129976165286648

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 5.96114493129926690374693236365.9611449312992669037469323636
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.290515053638703937985076823220.29051505363870393798507682322
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 2111 2\cdot1\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.46360467892898925184761592503.4636046789289892518476159250
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.463604679L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2905155.9611452123.463604679\displaystyle 3.463604679 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.290515 \cdot 5.961145 \cdot 2}{1^2} \approx 3.463604679

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 56784.2.a.i

qq32q5+q7+q93q11+2q157q17+5q19+O(q20) q - q^{3} - 2 q^{5} + q^{7} + q^{9} - 3 q^{11} + 2 q^{15} - 7 q^{17} + 5 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 274176
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I21I_{21}^{*} additive -1 4 29 17
33 11 I1I_{1} nonsplit multiplicative 1 1 1 1
77 11 I1I_{1} split multiplicative -1 1 1 1
1313 11 IVIV additive 1 2 4 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 1, 167, 0], [1, 2, 0, 1], [113, 2, 113, 3], [1, 0, 2, 1], [85, 2, 85, 3], [167, 2, 166, 3], [127, 2, 0, 1], [73, 2, 73, 3]]
 
GL(2,Integers(168)).subgroup(gens)
 
Gens := [[1, 1, 167, 0], [1, 2, 0, 1], [113, 2, 113, 3], [1, 0, 2, 1], [85, 2, 85, 3], [167, 2, 166, 3], [127, 2, 0, 1], [73, 2, 73, 3]];
 
sub<GL(2,Integers(168))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 168=2337 168 = 2^{3} \cdot 3 \cdot 7 , index 22, genus 00, and generators

(111670),(1201),(11321133),(1021),(852853),(16721663),(127201),(732733)\left(\begin{array}{rr} 1 & 1 \\ 167 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 113 & 2 \\ 113 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 85 & 2 \\ 85 & 3 \end{array}\right),\left(\begin{array}{rr} 167 & 2 \\ 166 & 3 \end{array}\right),\left(\begin{array}{rr} 127 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 73 & 2 \\ 73 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[168])K:=\Q(E[168]) is a degree-7431782474317824 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/168Z)\GL_2(\Z/168\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 3549=37132 3549 = 3 \cdot 7 \cdot 13^{2}
33 nonsplit multiplicative 44 18928=247132 18928 = 2^{4} \cdot 7 \cdot 13^{2}
77 split multiplicative 88 8112=243132 8112 = 2^{4} \cdot 3 \cdot 13^{2}
1313 additive 6262 336=2437 336 = 2^{4} \cdot 3 \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 56784bz consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 7098j1, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.3.28392.1 Z/2Z\Z/2\Z not in database
66 6.6.135425751552.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add nonsplit ord split ord add ord ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) - 1 1 4 1 - 1 1 3 1 1 1 1 1 1
μ\mu-invariant(s) - 0 0 0 0 - 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.