Properties

Label 56784cb
Number of curves $4$
Conductor $56784$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cb1")
 
E.isogeny_class()
 

Elliptic curves in class 56784cb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
56784.h3 56784cb1 \([0, -1, 0, -18984, 908400]\) \(38272753/4368\) \(86358023012352\) \([2]\) \(193536\) \(1.4064\) \(\Gamma_0(N)\)-optimal
56784.h2 56784cb2 \([0, -1, 0, -73064, -6619536]\) \(2181825073/298116\) \(5893935070593024\) \([2, 2]\) \(387072\) \(1.7530\)  
56784.h4 56784cb3 \([0, -1, 0, 116216, -35390096]\) \(8780064047/32388174\) \(-640333945883713536\) \([2]\) \(774144\) \(2.0996\)  
56784.h1 56784cb4 \([0, -1, 0, -1127624, -460502160]\) \(8020417344913/187278\) \(3702600236654592\) \([2]\) \(774144\) \(2.0996\)  

Rank

sage: E.rank()
 

The elliptic curves in class 56784cb have rank \(1\).

Complex multiplication

The elliptic curves in class 56784cb do not have complex multiplication.

Modular form 56784.2.a.cb

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{7} + q^{9} - 4 q^{11} + 2 q^{15} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.