E = EllipticCurve("cb1")
E.isogeny_class()
Elliptic curves in class 56784cb
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
56784.h3 |
56784cb1 |
[0,−1,0,−18984,908400] |
38272753/4368 |
86358023012352 |
[2] |
193536 |
1.4064
|
Γ0(N)-optimal |
56784.h2 |
56784cb2 |
[0,−1,0,−73064,−6619536] |
2181825073/298116 |
5893935070593024 |
[2,2] |
387072 |
1.7530
|
|
56784.h4 |
56784cb3 |
[0,−1,0,116216,−35390096] |
8780064047/32388174 |
−640333945883713536 |
[2] |
774144 |
2.0996
|
|
56784.h1 |
56784cb4 |
[0,−1,0,−1127624,−460502160] |
8020417344913/187278 |
3702600236654592 |
[2] |
774144 |
2.0996
|
|
The elliptic curves in class 56784cb have
rank 1.
The elliptic curves in class 56784cb do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.