Properties

Label 56784cb
Number of curves 44
Conductor 5678456784
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cb1")
 
E.isogeny_class()
 

Elliptic curves in class 56784cb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
56784.h3 56784cb1 [0,1,0,18984,908400][0, -1, 0, -18984, 908400] 38272753/436838272753/4368 8635802301235286358023012352 [2][2] 193536193536 1.40641.4064 Γ0(N)\Gamma_0(N)-optimal
56784.h2 56784cb2 [0,1,0,73064,6619536][0, -1, 0, -73064, -6619536] 2181825073/2981162181825073/298116 58939350705930245893935070593024 [2,2][2, 2] 387072387072 1.75301.7530  
56784.h4 56784cb3 [0,1,0,116216,35390096][0, -1, 0, 116216, -35390096] 8780064047/323881748780064047/32388174 640333945883713536-640333945883713536 [2][2] 774144774144 2.09962.0996  
56784.h1 56784cb4 [0,1,0,1127624,460502160][0, -1, 0, -1127624, -460502160] 8020417344913/1872788020417344913/187278 37026002366545923702600236654592 [2][2] 774144774144 2.09962.0996  

Rank

sage: E.rank()
 

The elliptic curves in class 56784cb have rank 11.

Complex multiplication

The elliptic curves in class 56784cb do not have complex multiplication.

Modular form 56784.2.a.cb

sage: E.q_eigenform(10)
 
qq32q5+q7+q94q11+2q15+6q174q19+O(q20)q - q^{3} - 2 q^{5} + q^{7} + q^{9} - 4 q^{11} + 2 q^{15} + 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.