Properties

Label 56784cb2
Conductor 5678456784
Discriminant 5.894×10155.894\times 10^{15}
j-invariant 2181825073298116 \frac{2181825073}{298116}
CM no
Rank 11
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x273064x6619536y^2=x^3-x^2-73064x-6619536 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z73064xz26619536z3y^2z=x^3-x^2z-73064xz^2-6619536z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x35918211x4843396350y^2=x^3-5918211x-4843396350 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -73064, -6619536])
 
gp: E = ellinit([0, -1, 0, -73064, -6619536])
 
magma: E := EllipticCurve([0, -1, 0, -73064, -6619536]);
 
oscar: E = elliptic_curve([0, -1, 0, -73064, -6619536])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(124,720)(-124, 720)3.00709101542197753636866347693.0070910154219775363686634769\infty
(108,0)(-108, 0)0022
(308,0)(308, 0)0022

Integral points

(199,0) \left(-199, 0\right) , (124,±720)(-124,\pm 720), (108,0) \left(-108, 0\right) , (308,0) \left(308, 0\right) , (2258,±106470)(2258,\pm 106470) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  56784 56784  = 24371322^{4} \cdot 3 \cdot 7 \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  58939350705930245893935070593024 = 21432721382^{14} \cdot 3^{2} \cdot 7^{2} \cdot 13^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  2181825073298116 \frac{2181825073}{298116}  = 223272132129732^{-2} \cdot 3^{-2} \cdot 7^{-2} \cdot 13^{-2} \cdot 1297^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.75302092316127352213375165741.7530209231612735221337516574
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.22260093612944015531022418484-0.22260093612944015531022418484
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.95664156637579430.9566415663757943
Szpiro ratio: σm\sigma_{m} ≈ 4.1299761652866484.129976165286648

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 3.00709101542197753636866347693.0070910154219775363686634769
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.293014457375447013783850204480.29301445737544701378385020448
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 64 64  = 222222 2^{2}\cdot2\cdot2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.52448456864981086240675595363.5244845686498108624067559536
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.524484569L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2930143.00709164423.524484569\displaystyle 3.524484569 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.293014 \cdot 3.007091 \cdot 64}{4^2} \approx 3.524484569

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 56784.2.a.h

qq32q5+q7+q94q11+2q15+6q174q19+O(q20) q - q^{3} - 2 q^{5} + q^{7} + q^{9} - 4 q^{11} + 2 q^{15} + 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 387072
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I6I_{6}^{*} additive -1 4 14 2
33 22 I2I_{2} nonsplit multiplicative 1 1 2 2
77 22 I2I_{2} split multiplicative -1 1 2 2
1313 44 I2I_{2}^{*} additive 1 2 8 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 2.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1563, 2, 1870, 2183], [1, 0, 4, 1], [167, 2180, 334, 2175], [545, 2180, 0, 2183], [1, 4, 0, 1], [1093, 2, 0, 1], [2181, 4, 2180, 5], [1457, 4, 730, 9]]
 
GL(2,Integers(2184)).subgroup(gens)
 
Gens := [[1563, 2, 1870, 2183], [1, 0, 4, 1], [167, 2180, 334, 2175], [545, 2180, 0, 2183], [1, 4, 0, 1], [1093, 2, 0, 1], [2181, 4, 2180, 5], [1457, 4, 730, 9]];
 
sub<GL(2,Integers(2184))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2184=233713 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 , index 4848, genus 00, and generators

(1563218702183),(1041),(16721803342175),(545218002183),(1401),(1093201),(2181421805),(145747309)\left(\begin{array}{rr} 1563 & 2 \\ 1870 & 2183 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 167 & 2180 \\ 334 & 2175 \end{array}\right),\left(\begin{array}{rr} 545 & 2180 \\ 0 & 2183 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1093 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2181 & 4 \\ 2180 & 5 \end{array}\right),\left(\begin{array}{rr} 1457 & 4 \\ 730 & 9 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2184])K:=\Q(E[2184]) is a degree-8115506380881155063808 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2184Z)\GL_2(\Z/2184\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 169=132 169 = 13^{2}
33 nonsplit multiplicative 44 18928=247132 18928 = 2^{4} \cdot 7 \cdot 13^{2}
77 split multiplicative 88 8112=243132 8112 = 2^{4} \cdot 3 \cdot 13^{2}
1313 additive 9898 336=2437 336 = 2^{4} \cdot 3 \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 56784cb consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 546g2, its twist by 52-52.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
44 Q(3,91)\Q(\sqrt{-3}, \sqrt{-91}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(14,26)\Q(\sqrt{-14}, \sqrt{-26}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(3,26)\Q(\sqrt{3}, \sqrt{26}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 16.0.132513778481397717569346994176.4 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add nonsplit ord split ord add ord ord ss ord ord ord ord ord ord
λ\lambda-invariant(s) - 7 1 2 1 - 1 1 1,1 1 1 1 1 1 1
μ\mu-invariant(s) - 0 0 0 0 - 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.