Properties

Label 56784ch2
Conductor 5678456784
Discriminant 1.361×1012-1.361\times 10^{12}
j-invariant 13383627864961024151263 -\frac{13383627864961024}{151263}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x21028837x401325939y^2=x^3-x^2-1028837x-401325939 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z1028837xz2401325939z3y^2z=x^3-x^2z-1028837xz^2-401325939z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x383335824x292816616976y^2=x^3-83335824x-292816616976 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -1028837, -401325939])
 
gp: E = ellinit([0, -1, 0, -1028837, -401325939])
 
magma: E := EllipticCurve([0, -1, 0, -1028837, -401325939]);
 
oscar: E = elliptic_curve([0, -1, 0, -1028837, -401325939])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  56784 56784  = 24371322^{4} \cdot 3 \cdot 7 \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  1361202425856-1361202425856 = 12123275133-1 \cdot 2^{12} \cdot 3^{2} \cdot 7^{5} \cdot 13^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13383627864961024151263 -\frac{13383627864961024}{151263}  = 12123275113193713-1 \cdot 2^{12} \cdot 3^{-2} \cdot 7^{-5} \cdot 11^{3} \cdot 19^{3} \cdot 71^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.89630501014547643881390376141.8963050101454764388139037614
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.561920490220146945383299779550.56192049022014694538329977955
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.15506802934152341.1550680293415234
Szpiro ratio: σm\sigma_{m} ≈ 4.8547889715796754.854788971579675

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0749519402878388156001863185090.074951940287838815600186318509
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 20 20  = 1252 1\cdot2\cdot5\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.49903880575677631200372637021.4990388057567763120037263702
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.499038806L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0749521.00000020121.499038806\displaystyle 1.499038806 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.074952 \cdot 1.000000 \cdot 20}{1^2} \approx 1.499038806

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 56784.2.a.d

qq33q5+q7+q9+3q15+2q17+q19+O(q20) q - q^{3} - 3 q^{5} + q^{7} + q^{9} + 3 q^{15} + 2 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 480000
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII^{*} additive -1 4 12 0
33 22 I2I_{2} nonsplit multiplicative 1 1 2 2
77 55 I5I_{5} split multiplicative -1 1 5 5
1313 22 IIIIII additive -1 2 3 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
55 5B 5.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[919, 1810, 920, 1809], [1811, 10, 1810, 11], [521, 10, 785, 51], [7, 10, 870, 671], [1, 0, 10, 1], [6, 13, 1765, 1701], [1814, 1807, 965, 1029], [909, 0, 0, 1819], [1, 10, 0, 1], [773, 10, 535, 827]]
 
GL(2,Integers(1820)).subgroup(gens)
 
Gens := [[919, 1810, 920, 1809], [1811, 10, 1810, 11], [521, 10, 785, 51], [7, 10, 870, 671], [1, 0, 10, 1], [6, 13, 1765, 1701], [1814, 1807, 965, 1029], [909, 0, 0, 1819], [1, 10, 0, 1], [773, 10, 535, 827]];
 
sub<GL(2,Integers(1820))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1820=225713 1820 = 2^{2} \cdot 5 \cdot 7 \cdot 13 , index 4848, genus 11, and generators

(91918109201809),(181110181011),(5211078551),(710870671),(10101),(61317651701),(181418079651029),(909001819),(11001),(77310535827)\left(\begin{array}{rr} 919 & 1810 \\ 920 & 1809 \end{array}\right),\left(\begin{array}{rr} 1811 & 10 \\ 1810 & 11 \end{array}\right),\left(\begin{array}{rr} 521 & 10 \\ 785 & 51 \end{array}\right),\left(\begin{array}{rr} 7 & 10 \\ 870 & 671 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 1765 & 1701 \end{array}\right),\left(\begin{array}{rr} 1814 & 1807 \\ 965 & 1029 \end{array}\right),\left(\begin{array}{rr} 909 & 0 \\ 0 & 1819 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 773 & 10 \\ 535 & 827 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1820])K:=\Q(E[1820]) is a degree-5072191488050721914880 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1820Z)\GL_2(\Z/1820\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 91=713 91 = 7 \cdot 13
33 nonsplit multiplicative 44 18928=247132 18928 = 2^{4} \cdot 7 \cdot 13^{2}
55 good 22 8112=243132 8112 = 2^{4} \cdot 3 \cdot 13^{2}
77 split multiplicative 88 8112=243132 8112 = 2^{4} \cdot 3 \cdot 13^{2}
1313 additive 5050 336=2437 336 = 2^{4} \cdot 3 \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5.
Its isogeny class 56784ch consists of 2 curves linked by isogenies of degree 5.

Twists

The minimal quadratic twist of this elliptic curve is 3549b2, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.364.1 Z/2Z\Z/2\Z not in database
44 4.0.4394000.2 Z/5Z\Z/5\Z not in database
66 6.0.12057136.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/10Z\Z/10\Z not in database
2020 20.4.220338485571341388525779700000000000000000000.1 Z/5Z\Z/5\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add nonsplit ord split ss add ord ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) - 0 0 1 0,0 - 0 2 0 0 0 0 0 0 0
μ\mu-invariant(s) - 0 1 0 0,0 - 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.