Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 57.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
57.b1 | 57c2 | \([0, 1, 1, -4390, -113432]\) | \(-9358714467168256/22284891\) | \(-22284891\) | \([]\) | \(60\) | \(0.65141\) | |
57.b2 | 57c1 | \([0, 1, 1, 20, -32]\) | \(841232384/1121931\) | \(-1121931\) | \([5]\) | \(12\) | \(-0.15331\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 57.b have rank \(0\).
Complex multiplication
The elliptic curves in class 57.b do not have complex multiplication.Modular form 57.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.