Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 570l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
570.l4 | 570l1 | \([1, 0, 0, 9335, -737383]\) | \(89962967236397039/287450726400000\) | \(-287450726400000\) | \([10]\) | \(2400\) | \(1.4575\) | \(\Gamma_0(N)\)-optimal |
570.l3 | 570l2 | \([1, 0, 0, -87945, -8655975]\) | \(75224183150104868881/11219310000000000\) | \(11219310000000000\) | \([10]\) | \(4800\) | \(1.8041\) | |
570.l2 | 570l3 | \([1, 0, 0, -3301465, -2309192023]\) | \(-3979640234041473454886161/1471455901872240\) | \(-1471455901872240\) | \([2]\) | \(12000\) | \(2.2623\) | |
570.l1 | 570l4 | \([1, 0, 0, -52823445, -147775056075]\) | \(16300610738133468173382620881/2228489100\) | \(2228489100\) | \([2]\) | \(24000\) | \(2.6088\) |
Rank
sage: E.rank()
The elliptic curves in class 570l have rank \(0\).
Complex multiplication
The elliptic curves in class 570l do not have complex multiplication.Modular form 570.2.a.l
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.