Properties

Label 5712.b
Number of curves 22
Conductor 57125712
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 5712.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5712.b1 5712n1 [0,1,0,2997,63639][0, -1, 0, -2997, -63639] 11632923639808/318495051-11632923639808/318495051 81534733056-81534733056 [][] 69126912 0.874930.87493 Γ0(N)\Gamma_0(N)-optimal
5712.b2 5712n2 [0,1,0,13323,265191][0, -1, 0, 13323, -265191] 1021544365555712/7059056472511021544365555712/705905647251 180711845696256-180711845696256 [][] 2073620736 1.42421.4242  

Rank

sage: E.rank()
 

The elliptic curves in class 5712.b have rank 11.

Complex multiplication

The elliptic curves in class 5712.b do not have complex multiplication.

Modular form 5712.2.a.b

sage: E.q_eigenform(10)
 
qq33q5q7+q9+3q11q13+3q15+q175q19+O(q20)q - q^{3} - 3 q^{5} - q^{7} + q^{9} + 3 q^{11} - q^{13} + 3 q^{15} + q^{17} - 5 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.