sage:E = EllipticCurve("x1")
E.isogeny_class()
Elliptic curves in class 5712.x
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
5712.x1 |
5712j4 |
[0,1,0,−2192,38772] |
569001644066/122451 |
250779648 |
[2] |
3072 |
0.60642
|
|
5712.x2 |
5712j3 |
[0,1,0,−992,−12012] |
52767497666/1753941 |
3592071168 |
[2] |
3072 |
0.60642
|
|
5712.x3 |
5712j2 |
[0,1,0,−152,420] |
381775972/127449 |
130507776 |
[2,2] |
1536 |
0.25985
|
|
5712.x4 |
5712j1 |
[0,1,0,28,60] |
9148592/9639 |
−2467584 |
[2] |
768 |
−0.086725
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 5712.x have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1−T |
7 | 1+T |
17 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1−2T+5T2 |
1.5.ac
|
11 |
1−4T+11T2 |
1.11.ae
|
13 |
1−2T+13T2 |
1.13.ac
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1−4T+23T2 |
1.23.ae
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 5712.x do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.