Properties

Label 57330cm
Number of curves $6$
Conductor $57330$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cm1")
 
E.isogeny_class()
 

Elliptic curves in class 57330cm

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
57330.bu6 57330cm1 \([1, -1, 0, 6606, 81108]\) \(371694959/249600\) \(-21407223801600\) \([2]\) \(196608\) \(1.2466\) \(\Gamma_0(N)\)-optimal
57330.bu5 57330cm2 \([1, -1, 0, -28674, 694980]\) \(30400540561/15210000\) \(1304502700410000\) \([2, 2]\) \(393216\) \(1.5932\)  
57330.bu3 57330cm3 \([1, -1, 0, -249174, -47329920]\) \(19948814692561/231344100\) \(19841486073236100\) \([2, 2]\) \(786432\) \(1.9398\)  
57330.bu2 57330cm4 \([1, -1, 0, -372654, 87584328]\) \(66730743078481/60937500\) \(5226372998437500\) \([2]\) \(786432\) \(1.9398\)  
57330.bu4 57330cm5 \([1, -1, 0, -50724, -120796110]\) \(-168288035761/73415764890\) \(-6296585374863291690\) \([2]\) \(1572864\) \(2.2863\)  
57330.bu1 57330cm6 \([1, -1, 0, -3975624, -3050103330]\) \(81025909800741361/11088090\) \(950982468598890\) \([2]\) \(1572864\) \(2.2863\)  

Rank

sage: E.rank()
 

The elliptic curves in class 57330cm have rank \(2\).

Complex multiplication

The elliptic curves in class 57330cm do not have complex multiplication.

Modular form 57330.2.a.cm

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - q^{8} - q^{10} - 4 q^{11} - q^{13} + q^{16} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.