Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 576.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
576.g1 | 576c3 | \([0, 0, 0, -1164, -15280]\) | \(7301384/3\) | \(71663616\) | \([2]\) | \(256\) | \(0.46966\) | |
576.g2 | 576c2 | \([0, 0, 0, -84, -160]\) | \(21952/9\) | \(26873856\) | \([2, 2]\) | \(128\) | \(0.12309\) | |
576.g3 | 576c1 | \([0, 0, 0, -39, 92]\) | \(140608/3\) | \(139968\) | \([2]\) | \(64\) | \(-0.22349\) | \(\Gamma_0(N)\)-optimal |
576.g4 | 576c4 | \([0, 0, 0, 276, -1168]\) | \(97336/81\) | \(-1934917632\) | \([2]\) | \(256\) | \(0.46966\) |
Rank
sage: E.rank()
The elliptic curves in class 576.g have rank \(0\).
Complex multiplication
The elliptic curves in class 576.g do not have complex multiplication.Modular form 576.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.