Properties

Label 576.g
Number of curves 44
Conductor 576576
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 576.g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
576.g1 576c3 [0,0,0,1164,15280][0, 0, 0, -1164, -15280] 7301384/37301384/3 7166361671663616 [2][2] 256256 0.469660.46966  
576.g2 576c2 [0,0,0,84,160][0, 0, 0, -84, -160] 21952/921952/9 2687385626873856 [2,2][2, 2] 128128 0.123090.12309  
576.g3 576c1 [0,0,0,39,92][0, 0, 0, -39, 92] 140608/3140608/3 139968139968 [2][2] 6464 0.22349-0.22349 Γ0(N)\Gamma_0(N)-optimal
576.g4 576c4 [0,0,0,276,1168][0, 0, 0, 276, -1168] 97336/8197336/81 1934917632-1934917632 [2][2] 256256 0.469660.46966  

Rank

sage: E.rank()
 

The elliptic curves in class 576.g have rank 00.

Complex multiplication

The elliptic curves in class 576.g do not have complex multiplication.

Modular form 576.2.a.g

sage: E.q_eigenform(10)
 
q+2q54q7+4q11+2q13+6q17+4q19+O(q20)q + 2 q^{5} - 4 q^{7} + 4 q^{11} + 2 q^{13} + 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.