Properties

Label 5760.br
Number of curves $2$
Conductor $5760$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("br1")
 
E.isogeny_class()
 

Elliptic curves in class 5760.br

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5760.br1 5760bo2 \([0, 0, 0, -372, 1424]\) \(953312/405\) \(2418647040\) \([2]\) \(2048\) \(0.49721\)  
5760.br2 5760bo1 \([0, 0, 0, 78, 164]\) \(281216/225\) \(-41990400\) \([2]\) \(1024\) \(0.15064\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5760.br have rank \(0\).

Complex multiplication

The elliptic curves in class 5760.br do not have complex multiplication.

Modular form 5760.2.a.br

sage: E.q_eigenform(10)
 
\(q + q^{5} + 2 q^{7} + 2 q^{11} - 2 q^{13} + 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.