Show commands:
SageMath
E = EllipticCurve("bv1")
E.isogeny_class()
Elliptic curves in class 5760.bv
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5760.bv1 | 5760bu1 | \([0, 0, 0, -5457, 152494]\) | \(192596360288/3796875\) | \(354294000000\) | \([2]\) | \(7680\) | \(1.0082\) | \(\Gamma_0(N)\)-optimal |
5760.bv2 | 5760bu2 | \([0, 0, 0, 168, 451744]\) | \(43904/7381125\) | \(-88159684608000\) | \([2]\) | \(15360\) | \(1.3547\) |
Rank
sage: E.rank()
The elliptic curves in class 5760.bv have rank \(0\).
Complex multiplication
The elliptic curves in class 5760.bv do not have complex multiplication.Modular form 5760.2.a.bv
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.