Properties

Label 5760.d
Number of curves 22
Conductor 57605760
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 5760.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5760.d1 5760d2 [0,0,0,1188,3888][0, 0, 0, -1188, -3888] 1149984/6251149984/625 100776960000100776960000 [2][2] 30723072 0.802240.80224  
5760.d2 5760d1 [0,0,0,918,10692][0, 0, 0, -918, -10692] 16979328/2516979328/25 125971200125971200 [2][2] 15361536 0.455670.45567 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5760.d have rank 11.

Complex multiplication

The elliptic curves in class 5760.d do not have complex multiplication.

Modular form 5760.2.a.d

sage: E.q_eigenform(10)
 
qq52q72q13+4q19+O(q20)q - q^{5} - 2 q^{7} - 2 q^{13} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.