Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 5760.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5760.d1 | 5760d2 | \([0, 0, 0, -1188, -3888]\) | \(1149984/625\) | \(100776960000\) | \([2]\) | \(3072\) | \(0.80224\) | |
5760.d2 | 5760d1 | \([0, 0, 0, -918, -10692]\) | \(16979328/25\) | \(125971200\) | \([2]\) | \(1536\) | \(0.45567\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 5760.d have rank \(1\).
Complex multiplication
The elliptic curves in class 5760.d do not have complex multiplication.Modular form 5760.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.