sage:E = EllipticCurve("r1")
E.isogeny_class()
Elliptic curves in class 57600r
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
CM discriminant |
57600.ch2 |
57600r1 |
[0,0,0,−750,−7000] |
8000 |
5832000000 |
[2] |
27648 |
0.60348
|
Γ0(N)-optimal |
−8 |
57600.ch1 |
57600r2 |
[0,0,0,−3000,56000] |
8000 |
373248000000 |
[2] |
55296 |
0.95005
|
|
−8 |
sage:E.rank()
The elliptic curves in class 57600r have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+2T+7T2 |
1.7.c
|
11 |
1+5T+11T2 |
1.11.f
|
13 |
1−6T+13T2 |
1.13.ag
|
17 |
1+3T+17T2 |
1.17.d
|
19 |
1−T+19T2 |
1.19.ab
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
Each elliptic curve in class 57600r has complex multiplication by an order in the imaginary quadratic field
Q(−2).
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.