Properties

Label 57600r
Number of curves 22
Conductor 5760057600
CM Q(2)\Q(\sqrt{-2})
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Elliptic curves in class 57600r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
57600.ch2 57600r1 [0,0,0,750,7000][0, 0, 0, -750, -7000] 80008000 58320000005832000000 [2][2] 2764827648 0.603480.60348 Γ0(N)\Gamma_0(N)-optimal 8-8
57600.ch1 57600r2 [0,0,0,3000,56000][0, 0, 0, -3000, 56000] 80008000 373248000000373248000000 [2][2] 5529655296 0.950050.95005   8-8

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 57600r have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
5511
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+2T+7T2 1 + 2 T + 7 T^{2} 1.7.c
1111 1+5T+11T2 1 + 5 T + 11 T^{2} 1.11.f
1313 16T+13T2 1 - 6 T + 13 T^{2} 1.13.ag
1717 1+3T+17T2 1 + 3 T + 17 T^{2} 1.17.d
1919 1T+19T2 1 - T + 19 T^{2} 1.19.ab
2323 1+4T+23T2 1 + 4 T + 23 T^{2} 1.23.e
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 57600r has complex multiplication by an order in the imaginary quadratic field Q(2)\Q(\sqrt{-2}) .

Modular form 57600.2.a.r

Copy content sage:E.q_eigenform(10)
 
q+6q116q172q19+O(q20)q + 6 q^{11} - 6 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.