Properties

Label 5776.k
Number of curves $1$
Conductor $5776$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 5776.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5776.k1 5776h1 \([0, 1, 0, -2286, -34549]\) \(4864\) \(271737008656\) \([]\) \(4104\) \(0.90937\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 5776.k1 has rank \(0\).

Complex multiplication

The elliptic curves in class 5776.k do not have complex multiplication.

Modular form 5776.2.a.k

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 2 q^{9} + 4 q^{11} - q^{13} - q^{15} + 3 q^{17} + O(q^{20})\) Copy content Toggle raw display