Properties

Label 57b
Number of curves 44
Conductor 5757
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 57b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
57.c2 57b1 [1,0,1,7,5][1, 0, 1, -7, 5] 30664297/324930664297/3249 32493249 [2,2][2, 2] 33 0.59158-0.59158 Γ0(N)\Gamma_0(N)-optimal
57.c3 57b2 [1,0,1,2,1][1, 0, 1, -2, -1] 389017/57389017/57 5757 [2][2] 66 0.93816-0.93816  
57.c1 57b3 [1,0,1,102,385][1, 0, 1, -102, 385] 115714886617/1539115714886617/1539 15391539 [4][4] 66 0.24501-0.24501  
57.c4 57b4 [1,0,1,8,29][1, 0, 1, 8, 29] 67419143/39096367419143/390963 390963-390963 [2][2] 66 0.24501-0.24501  

Rank

sage: E.rank()
 

The elliptic curves in class 57b have rank 00.

Complex multiplication

The elliptic curves in class 57b do not have complex multiplication.

Modular form 57.2.a.b

sage: E.q_eigenform(10)
 
q+q2+q3q42q5+q63q8+q92q10q12+6q132q15q166q17+q18q19+O(q20)q + q^{2} + q^{3} - q^{4} - 2 q^{5} + q^{6} - 3 q^{8} + q^{9} - 2 q^{10} - q^{12} + 6 q^{13} - 2 q^{15} - q^{16} - 6 q^{17} + q^{18} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1222214424142441)\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.