Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 57b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
57.c2 | 57b1 | \([1, 0, 1, -7, 5]\) | \(30664297/3249\) | \(3249\) | \([2, 2]\) | \(3\) | \(-0.59158\) | \(\Gamma_0(N)\)-optimal |
57.c3 | 57b2 | \([1, 0, 1, -2, -1]\) | \(389017/57\) | \(57\) | \([2]\) | \(6\) | \(-0.93816\) | |
57.c1 | 57b3 | \([1, 0, 1, -102, 385]\) | \(115714886617/1539\) | \(1539\) | \([4]\) | \(6\) | \(-0.24501\) | |
57.c4 | 57b4 | \([1, 0, 1, 8, 29]\) | \(67419143/390963\) | \(-390963\) | \([2]\) | \(6\) | \(-0.24501\) |
Rank
sage: E.rank()
The elliptic curves in class 57b have rank \(0\).
Complex multiplication
The elliptic curves in class 57b do not have complex multiplication.Modular form 57.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.