Properties

Label 5800.e
Number of curves $1$
Conductor $5800$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 5800.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5800.e1 5800a1 \([0, -1, 0, -2008, -33988]\) \(-55990084/29\) \(-464000000\) \([]\) \(2240\) \(0.61399\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 5800.e1 has rank \(1\).

Complex multiplication

The elliptic curves in class 5800.e do not have complex multiplication.

Modular form 5800.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{7} - 2 q^{9} + 3 q^{11} + q^{13} + O(q^{20})\) Copy content Toggle raw display