Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 5800.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5800.g1 | 5800f2 | \([0, 0, 0, -155, 550]\) | \(3217428/841\) | \(107648000\) | \([2]\) | \(1280\) | \(0.25010\) | |
5800.g2 | 5800f1 | \([0, 0, 0, -55, -150]\) | \(574992/29\) | \(928000\) | \([2]\) | \(640\) | \(-0.096474\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 5800.g have rank \(1\).
Complex multiplication
The elliptic curves in class 5800.g do not have complex multiplication.Modular form 5800.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.