Properties

Label 5800.g
Number of curves $2$
Conductor $5800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 5800.g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5800.g1 5800f2 \([0, 0, 0, -155, 550]\) \(3217428/841\) \(107648000\) \([2]\) \(1280\) \(0.25010\)  
5800.g2 5800f1 \([0, 0, 0, -55, -150]\) \(574992/29\) \(928000\) \([2]\) \(640\) \(-0.096474\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5800.g have rank \(1\).

Complex multiplication

The elliptic curves in class 5800.g do not have complex multiplication.

Modular form 5800.2.a.g

sage: E.q_eigenform(10)
 
\(q - 2 q^{7} - 3 q^{9} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.