E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 58080.f
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
58080.f1 |
58080bg4 |
[0,−1,0,−384336,−91579464] |
6922005943112/185625 |
168369157440000 |
[2] |
368640 |
1.8345
|
|
58080.f2 |
58080bg3 |
[0,−1,0,−106641,12137985] |
18483505984/1976535 |
14342358307368960 |
[2] |
368640 |
1.8345
|
|
58080.f3 |
58080bg1 |
[0,−1,0,−24966,−1305720] |
15179306176/2205225 |
250028198798400 |
[2,2] |
184320 |
1.4879
|
Γ0(N)-optimal |
58080.f4 |
58080bg2 |
[0,−1,0,41584,−7135500] |
8767302328/29229255 |
−26512081007132160 |
[2] |
368640 |
1.8345
|
|
The elliptic curves in class 58080.f have
rank 1.
The elliptic curves in class 58080.f do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.