Properties

Label 58080.f
Number of curves 44
Conductor 5808058080
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 58080.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
58080.f1 58080bg4 [0,1,0,384336,91579464][0, -1, 0, -384336, -91579464] 6922005943112/1856256922005943112/185625 168369157440000168369157440000 [2][2] 368640368640 1.83451.8345  
58080.f2 58080bg3 [0,1,0,106641,12137985][0, -1, 0, -106641, 12137985] 18483505984/197653518483505984/1976535 1434235830736896014342358307368960 [2][2] 368640368640 1.83451.8345  
58080.f3 58080bg1 [0,1,0,24966,1305720][0, -1, 0, -24966, -1305720] 15179306176/220522515179306176/2205225 250028198798400250028198798400 [2,2][2, 2] 184320184320 1.48791.4879 Γ0(N)\Gamma_0(N)-optimal
58080.f4 58080bg2 [0,1,0,41584,7135500][0, -1, 0, 41584, -7135500] 8767302328/292292558767302328/29229255 26512081007132160-26512081007132160 [2][2] 368640368640 1.83451.8345  

Rank

sage: E.rank()
 

The elliptic curves in class 58080.f have rank 11.

Complex multiplication

The elliptic curves in class 58080.f do not have complex multiplication.

Modular form 58080.2.a.f

sage: E.q_eigenform(10)
 
qq3q5+q9+2q13+q15+2q174q19+O(q20)q - q^{3} - q^{5} + q^{9} + 2 q^{13} + q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.