Properties

Label 58080.f
Number of curves $4$
Conductor $58080$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 58080.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
58080.f1 58080bg4 \([0, -1, 0, -384336, -91579464]\) \(6922005943112/185625\) \(168369157440000\) \([2]\) \(368640\) \(1.8345\)  
58080.f2 58080bg3 \([0, -1, 0, -106641, 12137985]\) \(18483505984/1976535\) \(14342358307368960\) \([2]\) \(368640\) \(1.8345\)  
58080.f3 58080bg1 \([0, -1, 0, -24966, -1305720]\) \(15179306176/2205225\) \(250028198798400\) \([2, 2]\) \(184320\) \(1.4879\) \(\Gamma_0(N)\)-optimal
58080.f4 58080bg2 \([0, -1, 0, 41584, -7135500]\) \(8767302328/29229255\) \(-26512081007132160\) \([2]\) \(368640\) \(1.8345\)  

Rank

sage: E.rank()
 

The elliptic curves in class 58080.f have rank \(1\).

Complex multiplication

The elliptic curves in class 58080.f do not have complex multiplication.

Modular form 58080.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} + 2 q^{13} + q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.