Properties

Label 5808o4
Conductor 58085808
Discriminant 54422353925442235392
j-invariant 287562283 \frac{28756228}{3}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x27784x+261732y^2=x^3+x^2-7784x+261732 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z7784xz2+261732z3y^2z=x^3+x^2z-7784xz^2+261732z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3630531x+192694194y^2=x^3-630531x+192694194 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -7784, 261732])
 
gp: E = ellinit([0, 1, 0, -7784, 261732])
 
magma: E := EllipticCurve([0, 1, 0, -7784, 261732]);
 
oscar: E = elliptic_curve([0, 1, 0, -7784, 261732])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(48,726)(-48, 726)1.61727442757212428901717425241.6172744275721242890171742524\infty
(51,0)(51, 0)0022

Integral points

(48,±726)(-48,\pm 726), (51,0) \left(51, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  5808 5808  = 2431122^{4} \cdot 3 \cdot 11^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  54422353925442235392 = 21031162^{10} \cdot 3 \cdot 11^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  287562283 \frac{28756228}{3}  = 223119332^{2} \cdot 3^{-1} \cdot 193^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.900168940599300654080577172880.90016894059930065408057717288
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.87640134626650570913142138398-0.87640134626650570913142138398
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.05617163459916921.0561716345991692
Szpiro ratio: σm\sigma_{m} ≈ 4.4413575482642334.441357548264233

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.61727442757212428901717425241.6172744275721242890171742524
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.30042786496120792846310558261.3004278649612079284631055826
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 2122 2\cdot1\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.20629746180795459478415809364.2062974618079545947841580936
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.206297462L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.3004281.6172748224.206297462\displaystyle 4.206297462 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.300428 \cdot 1.617274 \cdot 8}{2^2} \approx 4.206297462

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   5808.2.a.s

q+q32q5+q9+2q132q152q174q19+O(q20) q + q^{3} - 2 q^{5} + q^{9} + 2 q^{13} - 2 q^{15} - 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 5120
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I2I_{2}^{*} additive 1 4 10 0
33 11 I1I_{1} split multiplicative -1 1 1 1
1111 44 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 16.48.0.127

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[513, 16, 512, 17], [1, 16, 0, 1], [230, 77, 385, 450], [397, 352, 396, 265], [320, 341, 99, 34], [5, 4, 524, 525], [383, 0, 0, 527], [1, 0, 16, 1], [15, 2, 430, 515]]
 
GL(2,Integers(528)).subgroup(gens)
 
Gens := [[513, 16, 512, 17], [1, 16, 0, 1], [230, 77, 385, 450], [397, 352, 396, 265], [320, 341, 99, 34], [5, 4, 524, 525], [383, 0, 0, 527], [1, 0, 16, 1], [15, 2, 430, 515]];
 
sub<GL(2,Integers(528))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 528=24311 528 = 2^{4} \cdot 3 \cdot 11 , index 192192, genus 11, and generators

(5131651217),(11601),(23077385450),(397352396265),(3203419934),(54524525),(38300527),(10161),(152430515)\left(\begin{array}{rr} 513 & 16 \\ 512 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 230 & 77 \\ 385 & 450 \end{array}\right),\left(\begin{array}{rr} 397 & 352 \\ 396 & 265 \end{array}\right),\left(\begin{array}{rr} 320 & 341 \\ 99 & 34 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 524 & 525 \end{array}\right),\left(\begin{array}{rr} 383 & 0 \\ 0 & 527 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 430 & 515 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[528])K:=\Q(E[528]) is a degree-8110080081100800 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/528Z)\GL_2(\Z/528\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 363=3112 363 = 3 \cdot 11^{2}
33 split multiplicative 44 1936=24112 1936 = 2^{4} \cdot 11^{2}
1111 additive 6262 48=243 48 = 2^{4} \cdot 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 5808o consists of 6 curves linked by isogenies of degrees dividing 8.

Twists

The minimal quadratic twist of this elliptic curve is 24a3, its twist by 4444.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(3)\Q(\sqrt{3}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(11)\Q(\sqrt{11}) Z/4Z\Z/4\Z 2.2.44.1-72.1-a5
22 Q(33)\Q(\sqrt{33}) Z/4Z\Z/4\Z not in database
44 Q(3,11)\Q(\sqrt{3}, \sqrt{11}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(6,11)\Q(\sqrt{6}, \sqrt{11}) Z/8Z\Z/8\Z not in database
44 Q(2,11)\Q(\sqrt{2}, \sqrt{11}) Z/8Z\Z/8\Z not in database
88 8.0.43717791744.5 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.43717791744.26 Z/8Z\Z/8\Z not in database
88 8.8.77720518656.1 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.2.10623423393792.2 Z/6Z\Z/6\Z not in database
1616 16.0.1911245314971754561536.7 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add split ord ss add ord ord ord ord ord ord ord ord ord ss
λ\lambda-invariant(s) - 2 3 1,1 - 1 1 1 1 1 1 1 1 1 1,1
μ\mu-invariant(s) - 0 0 0,0 - 0 0 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.