Show commands:
SageMath
E = EllipticCurve("y1")
E.isogeny_class()
Elliptic curves in class 58482y
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
58482.p1 | 58482y1 | \([1, -1, 1, -2234, -43811]\) | \(-35937/4\) | \(-137185788996\) | \([]\) | \(82944\) | \(0.87441\) | \(\Gamma_0(N)\)-optimal |
58482.p2 | 58482y2 | \([1, -1, 1, 14011, 60157]\) | \(109503/64\) | \(-177792782538816\) | \([]\) | \(248832\) | \(1.4237\) |
Rank
sage: E.rank()
The elliptic curves in class 58482y have rank \(1\).
Complex multiplication
The elliptic curves in class 58482y do not have complex multiplication.Modular form 58482.2.a.y
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.