sage:E = EllipticCurve("h1")
E.isogeny_class()
Elliptic curves in class 585.h
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
585.h1 |
585h1 |
[1,−1,0,−9,0] |
117649/65 |
47385 |
[2] |
48 |
−0.41231
|
Γ0(N)-optimal |
585.h2 |
585h2 |
[1,−1,0,36,−27] |
6967871/4225 |
−3080025 |
[2] |
96 |
−0.065735
|
|
sage:E.rank()
The elliptic curves in class 585.h have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
3 | 1 |
5 | 1−T |
13 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
2 |
1−T+2T2 |
1.2.ab
|
7 |
1+4T+7T2 |
1.7.e
|
11 |
1+2T+11T2 |
1.11.c
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1+6T+19T2 |
1.19.g
|
23 |
1−6T+23T2 |
1.23.ag
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 585.h do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.