Show commands:
SageMath
E = EllipticCurve("h1")
E.isogeny_class()
Elliptic curves in class 585.h
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
585.h1 | 585h1 | \([1, -1, 0, -9, 0]\) | \(117649/65\) | \(47385\) | \([2]\) | \(48\) | \(-0.41231\) | \(\Gamma_0(N)\)-optimal |
585.h2 | 585h2 | \([1, -1, 0, 36, -27]\) | \(6967871/4225\) | \(-3080025\) | \([2]\) | \(96\) | \(-0.065735\) |
Rank
sage: E.rank()
The elliptic curves in class 585.h have rank \(1\).
Complex multiplication
The elliptic curves in class 585.h do not have complex multiplication.Modular form 585.2.a.h
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.