Properties

Label 585.h
Number of curves 22
Conductor 585585
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Elliptic curves in class 585.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
585.h1 585h1 [1,1,0,9,0][1, -1, 0, -9, 0] 117649/65117649/65 4738547385 [2][2] 4848 0.41231-0.41231 Γ0(N)\Gamma_0(N)-optimal
585.h2 585h2 [1,1,0,36,27][1, -1, 0, 36, -27] 6967871/42256967871/4225 3080025-3080025 [2][2] 9696 0.065735-0.065735  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 585.h have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
3311
551T1 - T
13131+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1T+2T2 1 - T + 2 T^{2} 1.2.ab
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1111 1+2T+11T2 1 + 2 T + 11 T^{2} 1.11.c
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 1+6T+19T2 1 + 6 T + 19 T^{2} 1.19.g
2323 16T+23T2 1 - 6 T + 23 T^{2} 1.23.ag
2929 1+2T+29T2 1 + 2 T + 29 T^{2} 1.29.c
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 585.h do not have complex multiplication.

Modular form 585.2.a.h

Copy content sage:E.q_eigenform(10)
 
q+q2q4+q54q73q8+q102q11q134q14q162q176q19+O(q20)q + q^{2} - q^{4} + q^{5} - 4 q^{7} - 3 q^{8} + q^{10} - 2 q^{11} - q^{13} - 4 q^{14} - q^{16} - 2 q^{17} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.