Properties

Label 58800.dy
Number of curves $2$
Conductor $58800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("dy1")
 
E.isogeny_class()
 

Elliptic curves in class 58800.dy

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
58800.dy1 58800ft1 \([0, -1, 0, -806458, 297495787]\) \(-3155449600/250047\) \(-4596528047343750000\) \([]\) \(1244160\) \(2.3279\) \(\Gamma_0(N)\)-optimal
58800.dy2 58800ft2 \([0, -1, 0, 4706042, 115583287]\) \(627021958400/363182463\) \(-6676258373357343750000\) \([]\) \(3732480\) \(2.8772\)  

Rank

sage: E.rank()
 

The elliptic curves in class 58800.dy have rank \(1\).

Complex multiplication

The elliptic curves in class 58800.dy do not have complex multiplication.

Modular form 58800.2.a.dy

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + 3 q^{11} - 4 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.