Properties

Label 58800.dy
Number of curves 22
Conductor 5880058800
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("dy1")
 
E.isogeny_class()
 

Elliptic curves in class 58800.dy

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
58800.dy1 58800ft1 [0,1,0,806458,297495787][0, -1, 0, -806458, 297495787] 3155449600/250047-3155449600/250047 4596528047343750000-4596528047343750000 [][] 12441601244160 2.32792.3279 Γ0(N)\Gamma_0(N)-optimal
58800.dy2 58800ft2 [0,1,0,4706042,115583287][0, -1, 0, 4706042, 115583287] 627021958400/363182463627021958400/363182463 6676258373357343750000-6676258373357343750000 [][] 37324803732480 2.87722.8772  

Rank

sage: E.rank()
 

The elliptic curves in class 58800.dy have rank 11.

Complex multiplication

The elliptic curves in class 58800.dy do not have complex multiplication.

Modular form 58800.2.a.dy

sage: E.q_eigenform(10)
 
qq3+q9+3q114q136q174q19+O(q20)q - q^{3} + q^{9} + 3 q^{11} - 4 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.