sage:E = EllipticCurve("dy1")
E.isogeny_class()
Elliptic curves in class 58800.dy
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
58800.dy1 |
58800ft1 |
[0,−1,0,−806458,297495787] |
−3155449600/250047 |
−4596528047343750000 |
[] |
1244160 |
2.3279
|
Γ0(N)-optimal |
58800.dy2 |
58800ft2 |
[0,−1,0,4706042,115583287] |
627021958400/363182463 |
−6676258373357343750000 |
[] |
3732480 |
2.8772
|
|
sage:E.rank()
The elliptic curves in class 58800.dy have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
5 | 1 |
7 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1−3T+11T2 |
1.11.ad
|
13 |
1+4T+13T2 |
1.13.e
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1−3T+23T2 |
1.23.ad
|
29 |
1−3T+29T2 |
1.29.ad
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 58800.dy do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1331)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.