Show commands:
SageMath
E = EllipticCurve("et1")
E.isogeny_class()
Elliptic curves in class 58800.et
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
58800.et1 | 58800hm1 | \([0, -1, 0, 1552, -95808]\) | \(16468459/165888\) | \(-4161798144000\) | \([]\) | \(101376\) | \(1.1025\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 58800.et1 has rank \(0\).
Complex multiplication
The elliptic curves in class 58800.et do not have complex multiplication.Modular form 58800.2.a.et
sage: E.q_eigenform(10)