Properties

Label 58800.et
Number of curves $1$
Conductor $58800$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("et1")
 
E.isogeny_class()
 

Elliptic curves in class 58800.et

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
58800.et1 58800hm1 \([0, -1, 0, 1552, -95808]\) \(16468459/165888\) \(-4161798144000\) \([]\) \(101376\) \(1.1025\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 58800.et1 has rank \(0\).

Complex multiplication

The elliptic curves in class 58800.et do not have complex multiplication.

Modular form 58800.2.a.et

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + 5 q^{11} + q^{13} - 2 q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display