Properties

Label 58800be
Number of curves $4$
Conductor $58800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("be1")
 
E.isogeny_class()
 

Elliptic curves in class 58800be

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
58800.ee3 58800be1 \([0, -1, 0, -87383, -9500238]\) \(2508888064/118125\) \(3474322031250000\) \([2]\) \(442368\) \(1.7428\) \(\Gamma_0(N)\)-optimal
58800.ee2 58800be2 \([0, -1, 0, -240508, 33068512]\) \(3269383504/893025\) \(420253992900000000\) \([2, 2]\) \(884736\) \(2.0894\)  
58800.ee4 58800be3 \([0, -1, 0, 616992, 214858512]\) \(13799183324/18600435\) \(-35013161237040000000\) \([2]\) \(1769472\) \(2.4360\)  
58800.ee1 58800be4 \([0, -1, 0, -3548008, 2573228512]\) \(2624033547076/324135\) \(610146537840000000\) \([2]\) \(1769472\) \(2.4360\)  

Rank

sage: E.rank()
 

The elliptic curves in class 58800be have rank \(0\).

Complex multiplication

The elliptic curves in class 58800be do not have complex multiplication.

Modular form 58800.2.a.be

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + 4 q^{11} - 6 q^{13} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.