Properties

Label 59200.u
Number of curves $3$
Conductor $59200$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("u1")
 
E.isogeny_class()
 

Elliptic curves in class 59200.u

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
59200.u1 59200be1 \([0, 1, 0, -85633, 9616863]\) \(-16954786009/370\) \(-1515520000000\) \([]\) \(165888\) \(1.4532\) \(\Gamma_0(N)\)-optimal
59200.u2 59200be2 \([0, 1, 0, -29633, 21992863]\) \(-702595369/50653000\) \(-207474688000000000\) \([]\) \(497664\) \(2.0025\)  
59200.u3 59200be3 \([0, 1, 0, 266367, -589839137]\) \(510273943271/37000000000\) \(-151552000000000000000\) \([]\) \(1492992\) \(2.5518\)  

Rank

sage: E.rank()
 

The elliptic curves in class 59200.u have rank \(2\).

Complex multiplication

The elliptic curves in class 59200.u do not have complex multiplication.

Modular form 59200.2.a.u

sage: E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{7} + q^{9} - 3 q^{11} - 4 q^{13} - 3 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.