Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-1202133x-507714637\) | (homogenize, simplify) |
\(y^2z=x^3+x^2z-1202133xz^2-507714637z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-97372800x-369831852000\) | (homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 59200 \) | = | $2^{6} \cdot 5^{2} \cdot 37$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $148000000000000$ | = | $2^{14} \cdot 5^{12} \cdot 37 $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( \frac{750484394082304}{578125} \) | = | $2^{19} \cdot 5^{-6} \cdot 7^{6} \cdot 23^{3} \cdot 37^{-1}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0268790077165369217600654571$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.41348834084621720680624831545$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $1.1088030644745788$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.878879309051085$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 0$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $0.14418212262325002251045600336$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L(E,1)$ | ≈ | $2.5952782072185004051882080606 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $9$ = $3^2$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 2.595278207 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{9 \cdot 0.144182 \cdot 1.000000 \cdot 2}{1^2} \approx 2.595278207$
Modular invariants
Modular form 59200.2.a.ct
For more coefficients, see the Downloads section to the right.
Modular degree: | 331776 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II^{*}$ | additive | 1 | 6 | 14 | 0 |
$5$ | $2$ | $I_{6}^{*}$ | additive | 1 | 2 | 12 | 6 |
$37$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4440 = 2^{3} \cdot 3 \cdot 5 \cdot 37 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1589 & 1770 \\ 3435 & 869 \end{array}\right),\left(\begin{array}{rr} 4435 & 6 \\ 4434 & 7 \end{array}\right),\left(\begin{array}{rr} 3364 & 2625 \\ 1655 & 1769 \end{array}\right),\left(\begin{array}{rr} 2663 & 0 \\ 0 & 4439 \end{array}\right),\left(\begin{array}{rr} 2881 & 2670 \\ 2880 & 2671 \end{array}\right),\left(\begin{array}{rr} 1111 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 2219 & 0 \\ 0 & 4439 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[4440])$ is a degree-$4030361763840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4440\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 925 = 5^{2} \cdot 37 \) |
$5$ | additive | $18$ | \( 2368 = 2^{6} \cdot 37 \) |
$37$ | split multiplicative | $38$ | \( 1600 = 2^{6} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 59200w
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 740b2, its twist by $40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-30}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.3.148.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.6.810448.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.349763422464000.2 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.9462528000.12 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.7021462680997327996396247973888000000000000000.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.6.58576931501719166871030343765051047936000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | add | ord | ord | ord | ss | ord | ss | ss | ord | split | ord | ord | ord |
$\lambda$-invariant(s) | - | 6 | - | 2 | 0 | 0 | 0,0 | 0 | 0,0 | 0,0 | 0 | 1 | 0 | 0 | 0 |
$\mu$-invariant(s) | - | 1 | - | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.