Properties

Label 60690a
Number of curves 88
Conductor 6069060690
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Elliptic curves in class 60690a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
60690.d7 60690a1 [1,1,0,143783,20917173][1, 1, 0, -143783, 20917173] 13619385906841/604800013619385906841/6048000 145984017312000145984017312000 [2][2] 442368442368 1.67641.6764 Γ0(N)\Gamma_0(N)-optimal
60690.d6 60690a2 [1,1,0,166903,13708357][1, 1, 0, -166903, 13708357] 21302308926361/893025000021302308926361/8930250000 215554525562250000215554525562250000 [2,2][2, 2] 884736884736 2.02302.0230  
60690.d5 60690a3 [1,1,0,425558,81384492][1, 1, 0, -425558, -81384492] 353108405631241/86318776320353108405631241/86318776320 20835254194195660802083525419419566080 [2][2] 13271041327104 2.22572.2257  
60690.d8 60690a4 [1,1,0,555597,101419857][1, 1, 0, 555597, 101419857] 785793873833639/637994920500785793873833639/637994920500 15399646415218264500-15399646415218264500 [2][2] 17694721769472 2.36962.3696  
60690.d4 60690a5 [1,1,0,1259323,534904967][1, 1, 0, -1259323, -534904967] 9150443179640281/1845703125009150443179640281/184570312500 44550786533203125004455078653320312500 [2][2] 17694721769472 2.36962.3696  
60690.d2 60690a6 [1,1,0,6344278,6152807468][1, 1, 0, -6344278, -6152807468] 1169975873419524361/1084253184001169975873419524361/108425318400 26171236042269696002617123604226969600 [2,2][2, 2] 26542082654208 2.57232.5723  
60690.d3 60690a7 [1,1,0,5881878,7087132908][1, 1, 0, -5881878, -7087132908] 932348627918877961/358766164249920-932348627918877961/358766164249920 8659743044447777244480-8659743044447777244480 [2][2] 53084165308416 2.91892.9189  
60690.d1 60690a8 [1,1,0,101506198,393671178092][1, 1, 0, -101506198, -393671178092] 4791901410190533590281/411600004791901410190533590281/41160000 993502340040000993502340040000 [2][2] 53084165308416 2.91892.9189  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 60690a have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
331+T1 + T
551+T1 + T
771+T1 + T
171711
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1313 14T+13T2 1 - 4 T + 13 T^{2} 1.13.ae
1919 1+6T+19T2 1 + 6 T + 19 T^{2} 1.19.g
2323 1+2T+23T2 1 + 2 T + 23 T^{2} 1.23.c
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 60690a do not have complex multiplication.

Modular form 60690.2.a.a

Copy content sage:E.q_eigenform(10)
 
qq2q3+q4q5+q6q7q8+q9+q10q12+2q13+q14+q15+q16q18+8q19+O(q20)q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - q^{12} + 2 q^{13} + q^{14} + q^{15} + q^{16} - q^{18} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1234461212216223663611212244421214631242124161236326612212643122141264123241)\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.