Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 60690a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
60690.d7 | 60690a1 | \([1, 1, 0, -143783, 20917173]\) | \(13619385906841/6048000\) | \(145984017312000\) | \([2]\) | \(442368\) | \(1.6764\) | \(\Gamma_0(N)\)-optimal |
60690.d6 | 60690a2 | \([1, 1, 0, -166903, 13708357]\) | \(21302308926361/8930250000\) | \(215554525562250000\) | \([2, 2]\) | \(884736\) | \(2.0230\) | |
60690.d5 | 60690a3 | \([1, 1, 0, -425558, -81384492]\) | \(353108405631241/86318776320\) | \(2083525419419566080\) | \([2]\) | \(1327104\) | \(2.2257\) | |
60690.d8 | 60690a4 | \([1, 1, 0, 555597, 101419857]\) | \(785793873833639/637994920500\) | \(-15399646415218264500\) | \([2]\) | \(1769472\) | \(2.3696\) | |
60690.d4 | 60690a5 | \([1, 1, 0, -1259323, -534904967]\) | \(9150443179640281/184570312500\) | \(4455078653320312500\) | \([2]\) | \(1769472\) | \(2.3696\) | |
60690.d2 | 60690a6 | \([1, 1, 0, -6344278, -6152807468]\) | \(1169975873419524361/108425318400\) | \(2617123604226969600\) | \([2, 2]\) | \(2654208\) | \(2.5723\) | |
60690.d3 | 60690a7 | \([1, 1, 0, -5881878, -7087132908]\) | \(-932348627918877961/358766164249920\) | \(-8659743044447777244480\) | \([2]\) | \(5308416\) | \(2.9189\) | |
60690.d1 | 60690a8 | \([1, 1, 0, -101506198, -393671178092]\) | \(4791901410190533590281/41160000\) | \(993502340040000\) | \([2]\) | \(5308416\) | \(2.9189\) |
Rank
sage: E.rank()
The elliptic curves in class 60690a have rank \(1\).
Complex multiplication
The elliptic curves in class 60690a do not have complex multiplication.Modular form 60690.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.