Properties

Label 6084.o
Number of curves $2$
Conductor $6084$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 6084.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6084.o1 6084l2 \([0, 0, 0, -797511, 274128478]\) \(-368484688\) \(-152234930075904\) \([3]\) \(56160\) \(1.9552\)  
6084.o2 6084l1 \([0, 0, 0, -6591, 628342]\) \(-208\) \(-152234930075904\) \([]\) \(18720\) \(1.4059\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 6084.o have rank \(1\).

Complex multiplication

The elliptic curves in class 6084.o do not have complex multiplication.

Modular form 6084.2.a.o

sage: E.q_eigenform(10)
 
\(q + 3 q^{5} - 4 q^{7} - 3 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.