Properties

Label 6084.o
Number of curves 22
Conductor 60846084
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 6084.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6084.o1 6084l2 [0,0,0,797511,274128478][0, 0, 0, -797511, 274128478] 368484688-368484688 152234930075904-152234930075904 [3][3] 5616056160 1.95521.9552  
6084.o2 6084l1 [0,0,0,6591,628342][0, 0, 0, -6591, 628342] 208-208 152234930075904-152234930075904 [][] 1872018720 1.40591.4059 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 6084.o have rank 11.

Complex multiplication

The elliptic curves in class 6084.o do not have complex multiplication.

Modular form 6084.2.a.o

sage: E.q_eigenform(10)
 
q+3q54q73q17+2q19+O(q20)q + 3 q^{5} - 4 q^{7} - 3 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.