Properties

Label 60840.a
Number of curves $4$
Conductor $60840$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 60840.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
60840.a1 60840r4 \([0, 0, 0, -329043, 72602062]\) \(546718898/405\) \(2918586825123840\) \([2]\) \(491520\) \(1.9012\)  
60840.a2 60840r3 \([0, 0, 0, -207363, -35912162]\) \(136835858/1875\) \(13511976042240000\) \([2]\) \(491520\) \(1.9012\)  
60840.a3 60840r2 \([0, 0, 0, -24843, 628342]\) \(470596/225\) \(810718562534400\) \([2, 2]\) \(245760\) \(1.5546\)  
60840.a4 60840r1 \([0, 0, 0, 5577, 74698]\) \(21296/15\) \(-13511976042240\) \([2]\) \(122880\) \(1.2080\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 60840.a have rank \(0\).

Complex multiplication

The elliptic curves in class 60840.a do not have complex multiplication.

Modular form 60840.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{7} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.