Properties

Label 60840g
Number of curves 44
Conductor 6084060840
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 60840g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
60840.q4 60840g1 [0,0,0,127257,12333958][0, 0, 0, 127257, -12333958] 253012016/219375253012016/219375 197612649617760000-197612649617760000 [2][2] 516096516096 2.00632.0063 Γ0(N)\Gamma_0(N)-optimal
60840.q3 60840g2 [0,0,0,633243,109221658][0, 0, 0, -633243, -109221658] 7793764996/30800257793764996/3080025 1109792640253340160011097926402533401600 [2,2][2, 2] 10321921032192 2.35292.3529  
60840.q2 60840g3 [0,0,0,4587843,3705385502][0, 0, 0, -4587843, 3705385502] 1481943889298/345436651481943889298/34543665 248935026075287685120248935026075287685120 [2][2] 20643842064384 2.69942.6994  
60840.q1 60840g4 [0,0,0,8846643,10124641618][0, 0, 0, -8846643, -10124641618] 10625310339698/385573510625310339698/3855735 2778591943745399808027785919437453998080 [2][2] 20643842064384 2.69942.6994  

Rank

sage: E.rank()
 

The elliptic curves in class 60840g have rank 00.

Complex multiplication

The elliptic curves in class 60840g do not have complex multiplication.

Modular form 60840.2.a.g

sage: E.q_eigenform(10)
 
qq5+4q11+2q17+4q19+O(q20)q - q^{5} + 4 q^{11} + 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.