Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 60840g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
60840.q4 | 60840g1 | \([0, 0, 0, 127257, -12333958]\) | \(253012016/219375\) | \(-197612649617760000\) | \([2]\) | \(516096\) | \(2.0063\) | \(\Gamma_0(N)\)-optimal |
60840.q3 | 60840g2 | \([0, 0, 0, -633243, -109221658]\) | \(7793764996/3080025\) | \(11097926402533401600\) | \([2, 2]\) | \(1032192\) | \(2.3529\) | |
60840.q2 | 60840g3 | \([0, 0, 0, -4587843, 3705385502]\) | \(1481943889298/34543665\) | \(248935026075287685120\) | \([2]\) | \(2064384\) | \(2.6994\) | |
60840.q1 | 60840g4 | \([0, 0, 0, -8846643, -10124641618]\) | \(10625310339698/3855735\) | \(27785919437453998080\) | \([2]\) | \(2064384\) | \(2.6994\) |
Rank
sage: E.rank()
The elliptic curves in class 60840g have rank \(0\).
Complex multiplication
The elliptic curves in class 60840g do not have complex multiplication.Modular form 60840.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.