Properties

Label 60840g
Number of curves $4$
Conductor $60840$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 60840g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
60840.q4 60840g1 \([0, 0, 0, 127257, -12333958]\) \(253012016/219375\) \(-197612649617760000\) \([2]\) \(516096\) \(2.0063\) \(\Gamma_0(N)\)-optimal
60840.q3 60840g2 \([0, 0, 0, -633243, -109221658]\) \(7793764996/3080025\) \(11097926402533401600\) \([2, 2]\) \(1032192\) \(2.3529\)  
60840.q2 60840g3 \([0, 0, 0, -4587843, 3705385502]\) \(1481943889298/34543665\) \(248935026075287685120\) \([2]\) \(2064384\) \(2.6994\)  
60840.q1 60840g4 \([0, 0, 0, -8846643, -10124641618]\) \(10625310339698/3855735\) \(27785919437453998080\) \([2]\) \(2064384\) \(2.6994\)  

Rank

sage: E.rank()
 

The elliptic curves in class 60840g have rank \(0\).

Complex multiplication

The elliptic curves in class 60840g do not have complex multiplication.

Modular form 60840.2.a.g

sage: E.q_eigenform(10)
 
\(q - q^{5} + 4 q^{11} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.