E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 60840g
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
60840.q4 |
60840g1 |
[0,0,0,127257,−12333958] |
253012016/219375 |
−197612649617760000 |
[2] |
516096 |
2.0063
|
Γ0(N)-optimal |
60840.q3 |
60840g2 |
[0,0,0,−633243,−109221658] |
7793764996/3080025 |
11097926402533401600 |
[2,2] |
1032192 |
2.3529
|
|
60840.q2 |
60840g3 |
[0,0,0,−4587843,3705385502] |
1481943889298/34543665 |
248935026075287685120 |
[2] |
2064384 |
2.6994
|
|
60840.q1 |
60840g4 |
[0,0,0,−8846643,−10124641618] |
10625310339698/3855735 |
27785919437453998080 |
[2] |
2064384 |
2.6994
|
|
The elliptic curves in class 60840g have
rank 0.
The elliptic curves in class 60840g do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.