Properties

Label 612.d
Number of curves $2$
Conductor $612$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 612.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
612.d1 612a1 \([0, 0, 0, -456, 3748]\) \(-1517101056/17\) \(-117504\) \([3]\) \(144\) \(0.12585\) \(\Gamma_0(N)\)-optimal
612.d2 612a2 \([0, 0, 0, -216, 7668]\) \(-221184/4913\) \(-24755860224\) \([]\) \(432\) \(0.67515\)  

Rank

sage: E.rank()
 

The elliptic curves in class 612.d have rank \(0\).

Complex multiplication

The elliptic curves in class 612.d do not have complex multiplication.

Modular form 612.2.a.d

sage: E.q_eigenform(10)
 
\(q + 3 q^{5} + 2 q^{7} + 3 q^{11} - q^{13} - q^{17} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.