Properties

Label 61200fh
Number of curves $6$
Conductor $61200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("fh1")
 
E.isogeny_class()
 

Elliptic curves in class 61200fh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
61200.do5 61200fh1 \([0, 0, 0, -122475, 15300250]\) \(4354703137/352512\) \(16446799872000000\) \([2]\) \(393216\) \(1.8545\) \(\Gamma_0(N)\)-optimal
61200.do4 61200fh2 \([0, 0, 0, -410475, -83483750]\) \(163936758817/30338064\) \(1415452713984000000\) \([2, 2]\) \(786432\) \(2.2011\)  
61200.do6 61200fh3 \([0, 0, 0, 813525, -486179750]\) \(1276229915423/2927177028\) \(-136570371418368000000\) \([2]\) \(1572864\) \(2.5477\)  
61200.do2 61200fh4 \([0, 0, 0, -6242475, -6002963750]\) \(576615941610337/27060804\) \(1262548871424000000\) \([2, 2]\) \(1572864\) \(2.5477\)  
61200.do3 61200fh5 \([0, 0, 0, -5918475, -6653879750]\) \(-491411892194497/125563633938\) \(-5858296905011328000000\) \([2]\) \(3145728\) \(2.8942\)  
61200.do1 61200fh6 \([0, 0, 0, -99878475, -384198767750]\) \(2361739090258884097/5202\) \(242704512000000\) \([2]\) \(3145728\) \(2.8942\)  

Rank

sage: E.rank()
 

The elliptic curves in class 61200fh have rank \(0\).

Complex multiplication

The elliptic curves in class 61200fh do not have complex multiplication.

Modular form 61200.2.a.fh

sage: E.q_eigenform(10)
 
\(q - 4 q^{11} + 2 q^{13} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.