Properties

Label 61200fh
Number of curves 66
Conductor 6120061200
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("fh1")
 
E.isogeny_class()
 

Elliptic curves in class 61200fh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
61200.do5 61200fh1 [0,0,0,122475,15300250][0, 0, 0, -122475, 15300250] 4354703137/3525124354703137/352512 1644679987200000016446799872000000 [2][2] 393216393216 1.85451.8545 Γ0(N)\Gamma_0(N)-optimal
61200.do4 61200fh2 [0,0,0,410475,83483750][0, 0, 0, -410475, -83483750] 163936758817/30338064163936758817/30338064 14154527139840000001415452713984000000 [2,2][2, 2] 786432786432 2.20112.2011  
61200.do6 61200fh3 [0,0,0,813525,486179750][0, 0, 0, 813525, -486179750] 1276229915423/29271770281276229915423/2927177028 136570371418368000000-136570371418368000000 [2][2] 15728641572864 2.54772.5477  
61200.do2 61200fh4 [0,0,0,6242475,6002963750][0, 0, 0, -6242475, -6002963750] 576615941610337/27060804576615941610337/27060804 12625488714240000001262548871424000000 [2,2][2, 2] 15728641572864 2.54772.5477  
61200.do3 61200fh5 [0,0,0,5918475,6653879750][0, 0, 0, -5918475, -6653879750] 491411892194497/125563633938-491411892194497/125563633938 5858296905011328000000-5858296905011328000000 [2][2] 31457283145728 2.89422.8942  
61200.do1 61200fh6 [0,0,0,99878475,384198767750][0, 0, 0, -99878475, -384198767750] 2361739090258884097/52022361739090258884097/5202 242704512000000242704512000000 [2][2] 31457283145728 2.89422.8942  

Rank

sage: E.rank()
 

The elliptic curves in class 61200fh have rank 00.

Complex multiplication

The elliptic curves in class 61200fh do not have complex multiplication.

Modular form 61200.2.a.fh

sage: E.q_eigenform(10)
 
q4q11+2q13+q174q19+O(q20)q - 4 q^{11} + 2 q^{13} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(124488212244421488424122848214848241)\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.