Show commands:
SageMath
E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 624.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
624.i1 | 624h4 | \([0, 1, 0, -1112, 13908]\) | \(37159393753/1053\) | \(4313088\) | \([4]\) | \(256\) | \(0.37478\) | |
624.i2 | 624h3 | \([0, 1, 0, -312, -2028]\) | \(822656953/85683\) | \(350957568\) | \([2]\) | \(256\) | \(0.37478\) | |
624.i3 | 624h2 | \([0, 1, 0, -72, 180]\) | \(10218313/1521\) | \(6230016\) | \([2, 2]\) | \(128\) | \(0.028207\) | |
624.i4 | 624h1 | \([0, 1, 0, 8, 20]\) | \(12167/39\) | \(-159744\) | \([2]\) | \(64\) | \(-0.31837\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 624.i have rank \(0\).
Complex multiplication
The elliptic curves in class 624.i do not have complex multiplication.Modular form 624.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.