Properties

Label 6300.t
Number of curves $1$
Conductor $6300$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 6300.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6300.t1 6300bc1 \([0, 0, 0, -9000, -337500]\) \(-221184/7\) \(-2551500000000\) \([]\) \(10080\) \(1.1568\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 6300.t1 has rank \(1\).

Complex multiplication

The elliptic curves in class 6300.t do not have complex multiplication.

Modular form 6300.2.a.t

sage: E.q_eigenform(10)
 
\(q + q^{7} - 3 q^{11} + q^{13} + 5 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display