Properties

Label 630c
Number of curves 88
Conductor 630630
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 630c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
630.a7 630c1 [1,1,0,1890,24300][1, -1, 0, 1890, -24300] 1023887723039/9289728001023887723039/928972800 677221171200-677221171200 [2][2] 10241024 0.957440.95744 Γ0(N)\Gamma_0(N)-optimal
630.a6 630c2 [1,1,0,9630,210924][1, -1, 0, -9630, -210924] 135487869158881/51438240000135487869158881/51438240000 3749847696000037498476960000 [2,2][2, 2] 20482048 1.30401.3040  
630.a4 630c3 [1,1,0,135630,19186524][1, -1, 0, -135630, -19186524] 378499465220294881/120530818800378499465220294881/120530818800 8786696690520087866966905200 [2][2] 40964096 1.65061.6506  
630.a5 630c4 [1,1,0,67950,6682500][1, -1, 0, -67950, 6682500] 47595748626367201/121550625000047595748626367201/1215506250000 886104056250000886104056250000 [2,2][2, 2] 40964096 1.65061.6506  
630.a2 630c5 [1,1,0,1080450,432540000][1, -1, 0, -1080450, 432540000] 191342053882402567201/129708022500191342053882402567201/129708022500 9455714840250094557148402500 [2,2][2, 2] 81928192 1.99721.9972  
630.a8 630c6 [1,1,0,11430,21304296][1, -1, 0, 11430, 21304296] 226523624554079/269165039062500226523624554079/269165039062500 196221313476562500-196221313476562500 [2][2] 81928192 1.99721.9972  
630.a1 630c7 [1,1,0,17287200,27669604050][1, -1, 0, -17287200, 27669604050] 783736670177727068275201/360150783736670177727068275201/360150 262549350262549350 [2][2] 1638416384 2.34372.3437  
630.a3 630c8 [1,1,0,1073700,438205950][1, -1, 0, -1073700, 438205950] 187778242790732059201/4984939585440150-187778242790732059201/4984939585440150 3634020957785869350-3634020957785869350 [2][2] 1638416384 2.34372.3437  

Rank

sage: E.rank()
 

The elliptic curves in class 630c have rank 00.

Complex multiplication

The elliptic curves in class 630c do not have complex multiplication.

Modular form 630.2.a.c

sage: E.q_eigenform(10)
 
qq2+q4q5q7q8+q10+4q112q13+q14+q162q17+4q19+O(q20)q - q^{2} + q^{4} - q^{5} - q^{7} - q^{8} + q^{10} + 4 q^{11} - 2 q^{13} + q^{14} + q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(124488161621224488421488161642412244848214228482418816816428141681642841)\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 8 & 8 & 16 & 16 \\ 4 & 2 & 4 & 1 & 2 & 2 & 4 & 4 \\ 8 & 4 & 8 & 2 & 1 & 4 & 2 & 2 \\ 8 & 4 & 8 & 2 & 4 & 1 & 8 & 8 \\ 16 & 8 & 16 & 4 & 2 & 8 & 1 & 4 \\ 16 & 8 & 16 & 4 & 2 & 8 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.