Properties

Label 630e
Number of curves 44
Conductor 630630
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 630e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
630.d4 630e1 [1,1,0,21,53][1, -1, 0, 21, 53] 1367631/28001367631/2800 2041200-2041200 [2][2] 128128 0.10485-0.10485 Γ0(N)\Gamma_0(N)-optimal
630.d3 630e2 [1,1,0,159,665][1, -1, 0, -159, 665] 611960049/122500611960049/122500 8930250089302500 [2,2][2, 2] 256256 0.241720.24172  
630.d2 630e3 [1,1,0,789,7777][1, -1, 0, -789, -7777] 74565301329/546875074565301329/5468750 39867187503986718750 [2][2] 512512 0.588290.58829  
630.d1 630e4 [1,1,0,2409,46115][1, -1, 0, -2409, 46115] 2121328796049/1200502121328796049/120050 8751645087516450 [2][2] 512512 0.588290.58829  

Rank

sage: E.rank()
 

The elliptic curves in class 630e have rank 11.

Complex multiplication

The elliptic curves in class 630e do not have complex multiplication.

Modular form 630.2.a.e

sage: E.q_eigenform(10)
 
qq2+q4+q5q7q8q104q116q13+q14+q162q17+O(q20)q - q^{2} + q^{4} + q^{5} - q^{7} - q^{8} - q^{10} - 4 q^{11} - 6 q^{13} + q^{14} + q^{16} - 2 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.