sage:E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 630e
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
630.d4 |
630e1 |
[1,−1,0,21,53] |
1367631/2800 |
−2041200 |
[2] |
128 |
−0.10485
|
Γ0(N)-optimal |
630.d3 |
630e2 |
[1,−1,0,−159,665] |
611960049/122500 |
89302500 |
[2,2] |
256 |
0.24172
|
|
630.d2 |
630e3 |
[1,−1,0,−789,−7777] |
74565301329/5468750 |
3986718750 |
[2] |
512 |
0.58829
|
|
630.d1 |
630e4 |
[1,−1,0,−2409,46115] |
2121328796049/120050 |
87516450 |
[2] |
512 |
0.58829
|
|
sage:E.rank()
The elliptic curves in class 630e have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1 |
5 | 1−T |
7 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1+4T+11T2 |
1.11.e
|
13 |
1−6T+13T2 |
1.13.ag
|
17 |
1−4T+17T2 |
1.17.ae
|
19 |
1−6T+19T2 |
1.19.ag
|
23 |
1+23T2 |
1.23.a
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 630e do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.