Properties

Label 6336.bq
Number of curves $1$
Conductor $6336$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bq1")
 
E.isogeny_class()
 

Elliptic curves in class 6336.bq

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6336.bq1 6336by1 \([0, 0, 0, -102, -398]\) \(-2515456/11\) \(-513216\) \([]\) \(960\) \(-0.051191\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 6336.bq1 has rank \(1\).

Complex multiplication

The elliptic curves in class 6336.bq do not have complex multiplication.

Modular form 6336.2.a.bq

sage: E.q_eigenform(10)
 
\(q + q^{5} - 4 q^{7} - q^{11} + 2 q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display