Properties

Label 6336.h
Number of curves $1$
Conductor $6336$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 6336.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6336.h1 6336s1 \([0, 0, 0, -144, -864]\) \(-27648/11\) \(-131383296\) \([]\) \(1792\) \(0.26667\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 6336.h1 has rank \(0\).

Complex multiplication

The elliptic curves in class 6336.h do not have complex multiplication.

Modular form 6336.2.a.h

sage: E.q_eigenform(10)
 
\(q - 3 q^{5} - 2 q^{7} - q^{11} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display