Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 637.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
637.c1 | 637a1 | \([1, -1, 0, -107, 454]\) | \(-56723625/13\) | \(-31213\) | \([]\) | \(60\) | \(-0.14604\) | \(\Gamma_0(N)\)-optimal |
637.c2 | 637a2 | \([1, -1, 0, 628, -17823]\) | \(11397810375/62748517\) | \(-150659189317\) | \([]\) | \(420\) | \(0.82691\) |
Rank
sage: E.rank()
The elliptic curves in class 637.c have rank \(1\).
Complex multiplication
The elliptic curves in class 637.c do not have complex multiplication.Modular form 637.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.