Properties

Label 6384c
Number of curves $4$
Conductor $6384$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 6384c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6384.f4 6384c1 \([0, -1, 0, 41, -86]\) \(464857088/410571\) \(-6569136\) \([2]\) \(1024\) \(-0.0043898\) \(\Gamma_0(N)\)-optimal
6384.f3 6384c2 \([0, -1, 0, -204, -576]\) \(3685542352/1432809\) \(366799104\) \([2, 2]\) \(2048\) \(0.34218\)  
6384.f1 6384c3 \([0, -1, 0, -2864, -58032]\) \(2538016415428/872613\) \(893555712\) \([2]\) \(4096\) \(0.68876\)  
6384.f2 6384c4 \([0, -1, 0, -1464, 21600]\) \(339112345828/8210223\) \(8407268352\) \([4]\) \(4096\) \(0.68876\)  

Rank

sage: E.rank()
 

The elliptic curves in class 6384c have rank \(0\).

Complex multiplication

The elliptic curves in class 6384c do not have complex multiplication.

Modular form 6384.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} - q^{7} + q^{9} + 4 q^{11} + 2 q^{13} + 2 q^{15} + 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.